File size: 3,048 Bytes
703329b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 |
---
language: code
thumbnail:
---
# CodeBERTaPy
CodeBERTaPy is a RoBERTa-like model trained on the [CodeSearchNet](https://github.blog/2019-09-26-introducing-the-codesearchnet-challenge/) dataset from GitHub for `python` by [Manuel Romero](https://twitter.com/mrm8488)
The **tokenizer** is a Byte-level BPE tokenizer trained on the corpus using Hugging Face `tokenizers`.
Because it is trained on a corpus of code (vs. natural language), it encodes the corpus efficiently (the sequences are between 33% to 50% shorter, compared to the same corpus tokenized by gpt2/roberta).
The (small) **model** is a 6-layer, 84M parameters, RoBERTa-like Transformer model โ thatโs the same number of layers & heads as DistilBERT โ initialized from the default initialization settings and trained from scratch on the full `python` corpus for 4 epochs.
## Quick start: masked language modeling prediction
```python
PYTHON_CODE = """
fruits = ['apples', 'bananas', 'oranges']
for idx, <mask> in enumerate(fruits):
print("index is %d and value is %s" % (idx, val))
""".lstrip()
```
### Does the model know how to complete simple Python code?
```python
from transformers import pipeline
fill_mask = pipeline(
"fill-mask",
model="mrm8488/CodeBERTaPy",
tokenizer="mrm8488/CodeBERTaPy"
)
fill_mask(PYTHON_CODE)
## Top 5 predictions:
'val' # prob 0.980728805065155
'value'
'idx'
',val'
'_'
```
### Yes! That was easy ๐ Let's try with another Flask like example
```python
PYTHON_CODE2 = """
@app.route('/<name>')
def hello_name(name):
return "Hello {}!".format(<mask>)
if __name__ == '__main__':
app.run()
""".lstrip()
fill_mask(PYTHON_CODE2)
## Top 5 predictions:
'name' # prob 0.9961813688278198
' name'
'url'
'description'
'self'
```
### Yeah! It works ๐ Let's try with another Tensorflow/Keras like example
```python
PYTHON_CODE3="""
model = keras.Sequential([
keras.layers.Flatten(input_shape=(28, 28)),
keras.layers.<mask>(128, activation='relu'),
keras.layers.Dense(10, activation='softmax')
])
""".lstrip()
fill_mask(PYTHON_CODE3)
## Top 5 predictions:
'Dense' # prob 0.4482928514480591
'relu'
'Flatten'
'Activation'
'Conv'
```
> Great! ๐
## This work is heavily inspired on [CodeBERTa](https://github.com/huggingface/transformers/blob/master/model_cards/huggingface/CodeBERTa-small-v1/README.md) by huggingface team
<br>
## CodeSearchNet citation
<details>
```bibtex
@article{husain_codesearchnet_2019,
title = {{CodeSearchNet} {Challenge}: {Evaluating} the {State} of {Semantic} {Code} {Search}},
shorttitle = {{CodeSearchNet} {Challenge}},
url = {http://arxiv.org/abs/1909.09436},
urldate = {2020-03-12},
journal = {arXiv:1909.09436 [cs, stat]},
author = {Husain, Hamel and Wu, Ho-Hsiang and Gazit, Tiferet and Allamanis, Miltiadis and Brockschmidt, Marc},
month = sep,
year = {2019},
note = {arXiv: 1909.09436},
}
```
</details>
> Created by [Manuel Romero/@mrm8488](https://twitter.com/mrm8488)
> Made with <span style="color: #e25555;">♥</span> in Spain
|