Transformers
GGUF
English
code
hpc
parallel
axonn
imatrix
conversational
mradermacher commited on
Commit
ceb54a8
·
verified ·
1 Parent(s): 35892f2

auto-patch README.md

Browse files
Files changed (1) hide show
  1. README.md +78 -0
README.md CHANGED
@@ -1,6 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  <!-- ### quantize_version: 2 -->
2
  <!-- ### output_tensor_quantised: 1 -->
3
  <!-- ### convert_type: hf -->
4
  <!-- ### vocab_type: -->
5
  <!-- ### tags: nicoboss -->
6
  weighted/imatrix quants of https://huggingface.co/hpcgroup/hpc-coder-v2-16b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: hpcgroup/hpc-coder-v2-16b
3
+ datasets:
4
+ - hpcgroup/hpc-instruct
5
+ - ise-uiuc/Magicoder-OSS-Instruct-75K
6
+ - nickrosh/Evol-Instruct-Code-80k-v1
7
+ language:
8
+ - en
9
+ library_name: transformers
10
+ quantized_by: mradermacher
11
+ tags:
12
+ - code
13
+ - hpc
14
+ - parallel
15
+ - axonn
16
+ ---
17
+ ## About
18
+
19
  <!-- ### quantize_version: 2 -->
20
  <!-- ### output_tensor_quantised: 1 -->
21
  <!-- ### convert_type: hf -->
22
  <!-- ### vocab_type: -->
23
  <!-- ### tags: nicoboss -->
24
  weighted/imatrix quants of https://huggingface.co/hpcgroup/hpc-coder-v2-16b
25
+
26
+ <!-- provided-files -->
27
+ static quants are available at https://huggingface.co/mradermacher/hpc-coder-v2-16b-GGUF
28
+ ## Usage
29
+
30
+ If you are unsure how to use GGUF files, refer to one of [TheBloke's
31
+ READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
32
+ more details, including on how to concatenate multi-part files.
33
+
34
+ ## Provided Quants
35
+
36
+ (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
37
+
38
+ | Link | Type | Size/GB | Notes |
39
+ |:-----|:-----|--------:|:------|
40
+ | [GGUF](https://huggingface.co/mradermacher/hpc-coder-v2-16b-i1-GGUF/resolve/main/hpc-coder-v2-16b.i1-IQ1_S.gguf) | i1-IQ1_S | 5.1 | for the desperate |
41
+ | [GGUF](https://huggingface.co/mradermacher/hpc-coder-v2-16b-i1-GGUF/resolve/main/hpc-coder-v2-16b.i1-IQ1_M.gguf) | i1-IQ1_M | 5.3 | mostly desperate |
42
+ | [GGUF](https://huggingface.co/mradermacher/hpc-coder-v2-16b-i1-GGUF/resolve/main/hpc-coder-v2-16b.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 5.7 | |
43
+ | [GGUF](https://huggingface.co/mradermacher/hpc-coder-v2-16b-i1-GGUF/resolve/main/hpc-coder-v2-16b.i1-IQ2_XS.gguf) | i1-IQ2_XS | 6.1 | |
44
+ | [GGUF](https://huggingface.co/mradermacher/hpc-coder-v2-16b-i1-GGUF/resolve/main/hpc-coder-v2-16b.i1-IQ2_S.gguf) | i1-IQ2_S | 6.1 | |
45
+ | [GGUF](https://huggingface.co/mradermacher/hpc-coder-v2-16b-i1-GGUF/resolve/main/hpc-coder-v2-16b.i1-IQ2_M.gguf) | i1-IQ2_M | 6.4 | |
46
+ | [GGUF](https://huggingface.co/mradermacher/hpc-coder-v2-16b-i1-GGUF/resolve/main/hpc-coder-v2-16b.i1-Q2_K.gguf) | i1-Q2_K | 6.5 | IQ3_XXS probably better |
47
+ | [GGUF](https://huggingface.co/mradermacher/hpc-coder-v2-16b-i1-GGUF/resolve/main/hpc-coder-v2-16b.i1-Q2_K_S.gguf) | i1-Q2_K_S | 6.6 | very low quality |
48
+ | [GGUF](https://huggingface.co/mradermacher/hpc-coder-v2-16b-i1-GGUF/resolve/main/hpc-coder-v2-16b.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 7.1 | lower quality |
49
+ | [GGUF](https://huggingface.co/mradermacher/hpc-coder-v2-16b-i1-GGUF/resolve/main/hpc-coder-v2-16b.i1-IQ3_XS.gguf) | i1-IQ3_XS | 7.2 | |
50
+ | [GGUF](https://huggingface.co/mradermacher/hpc-coder-v2-16b-i1-GGUF/resolve/main/hpc-coder-v2-16b.i1-IQ3_S.gguf) | i1-IQ3_S | 7.6 | beats Q3_K* |
51
+ | [GGUF](https://huggingface.co/mradermacher/hpc-coder-v2-16b-i1-GGUF/resolve/main/hpc-coder-v2-16b.i1-Q3_K_S.gguf) | i1-Q3_K_S | 7.6 | IQ3_XS probably better |
52
+ | [GGUF](https://huggingface.co/mradermacher/hpc-coder-v2-16b-i1-GGUF/resolve/main/hpc-coder-v2-16b.i1-IQ3_M.gguf) | i1-IQ3_M | 7.7 | |
53
+ | [GGUF](https://huggingface.co/mradermacher/hpc-coder-v2-16b-i1-GGUF/resolve/main/hpc-coder-v2-16b.i1-Q3_K_M.gguf) | i1-Q3_K_M | 8.2 | IQ3_S probably better |
54
+ | [GGUF](https://huggingface.co/mradermacher/hpc-coder-v2-16b-i1-GGUF/resolve/main/hpc-coder-v2-16b.i1-Q3_K_L.gguf) | i1-Q3_K_L | 8.6 | IQ3_M probably better |
55
+ | [GGUF](https://huggingface.co/mradermacher/hpc-coder-v2-16b-i1-GGUF/resolve/main/hpc-coder-v2-16b.i1-IQ4_XS.gguf) | i1-IQ4_XS | 8.7 | |
56
+ | [GGUF](https://huggingface.co/mradermacher/hpc-coder-v2-16b-i1-GGUF/resolve/main/hpc-coder-v2-16b.i1-IQ4_NL.gguf) | i1-IQ4_NL | 9.0 | prefer IQ4_XS |
57
+ | [GGUF](https://huggingface.co/mradermacher/hpc-coder-v2-16b-i1-GGUF/resolve/main/hpc-coder-v2-16b.i1-Q4_0.gguf) | i1-Q4_0 | 9.0 | fast, low quality |
58
+ | [GGUF](https://huggingface.co/mradermacher/hpc-coder-v2-16b-i1-GGUF/resolve/main/hpc-coder-v2-16b.i1-Q4_K_S.gguf) | i1-Q4_K_S | 9.6 | optimal size/speed/quality |
59
+ | [GGUF](https://huggingface.co/mradermacher/hpc-coder-v2-16b-i1-GGUF/resolve/main/hpc-coder-v2-16b.i1-Q4_1.gguf) | i1-Q4_1 | 10.0 | |
60
+ | [GGUF](https://huggingface.co/mradermacher/hpc-coder-v2-16b-i1-GGUF/resolve/main/hpc-coder-v2-16b.i1-Q4_K_M.gguf) | i1-Q4_K_M | 10.5 | fast, recommended |
61
+ | [GGUF](https://huggingface.co/mradermacher/hpc-coder-v2-16b-i1-GGUF/resolve/main/hpc-coder-v2-16b.i1-Q5_K_S.gguf) | i1-Q5_K_S | 11.2 | |
62
+ | [GGUF](https://huggingface.co/mradermacher/hpc-coder-v2-16b-i1-GGUF/resolve/main/hpc-coder-v2-16b.i1-Q5_K_M.gguf) | i1-Q5_K_M | 12.0 | |
63
+ | [GGUF](https://huggingface.co/mradermacher/hpc-coder-v2-16b-i1-GGUF/resolve/main/hpc-coder-v2-16b.i1-Q6_K.gguf) | i1-Q6_K | 14.2 | practically like static Q6_K |
64
+
65
+ Here is a handy graph by ikawrakow comparing some lower-quality quant
66
+ types (lower is better):
67
+
68
+ ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png)
69
+
70
+ And here are Artefact2's thoughts on the matter:
71
+ https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
72
+
73
+ ## FAQ / Model Request
74
+
75
+ See https://huggingface.co/mradermacher/model_requests for some answers to
76
+ questions you might have and/or if you want some other model quantized.
77
+
78
+ ## Thanks
79
+
80
+ I thank my company, [nethype GmbH](https://www.nethype.de/), for letting
81
+ me use its servers and providing upgrades to my workstation to enable
82
+ this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.
83
+
84
+ <!-- end -->