File size: 10,662 Bytes
27a4d71 999d29f 27a4d71 999d29f 27a4d71 999d29f 27a4d71 999d29f 27a4d71 999d29f 27a4d71 999d29f 27a4d71 999d29f 27a4d71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 |
# -*- coding: utf-8 -*-
from __future__ import annotations
import os, json, re
from pathlib import Path
from typing import List, Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from PIL import Image
try:
import open_clip
HAS_OPENCLIP = True
except Exception:
HAS_OPENCLIP = False
from transformers import (
AutoModelForCausalLM, AutoTokenizer,
CLIPImageProcessor as HFCLIPImageProcessor,
CLIPModel as HFCLIPModel,
)
class PrefixProjector(nn.Module):
def __init__(self, in_dim: int, out_dim: int, tokens: int, p_drop: float = 0.05):
super().__init__()
hidden = max(512, out_dim * 2)
self.fc1 = nn.Linear(in_dim, hidden)
self.fc2 = nn.Linear(hidden, out_dim * tokens)
self.ln = nn.LayerNorm(out_dim)
self.tokens = tokens
self.drop = nn.Dropout(p_drop)
self.alpha = nn.Parameter(torch.tensor(0.5))
nn.init.xavier_uniform_(self.fc1.weight, gain=1.0)
nn.init.zeros_(self.fc1.bias)
nn.init.xavier_uniform_(self.fc2.weight, gain=0.5)
nn.init.zeros_(self.fc2.bias)
def forward(self, x: torch.Tensor) -> torch.Tensor:
y = F.gelu(self.fc1(x))
y = self.fc2(y).view(x.size(0), self.tokens, -1)
y = self.ln(y)
y = self.drop(self.alpha * y)
return y
class CLIPBackend:
def __init__(self, repo_or_kind: str, device: str):
self.device = device
self.repo_or_kind = repo_or_kind
# Определяем тип модели
if 'BiomedCLIP' in repo_or_kind or 'microsoft/BiomedCLIP-PubMedBERT_256-vit_base_patch16_224' in repo_or_kind:
# BiomedCLIP через open_clip
assert HAS_OPENCLIP, "open_clip is required for BiomedCLIP"
if not repo_or_kind.startswith('microsoft/'):
repo_or_kind = 'microsoft/BiomedCLIP-PubMedBERT_256-vit_base_patch16_224'
model_name = f'hf-hub:{repo_or_kind}'
self.model, self.preprocess, _ = open_clip.create_model_and_transforms(model_name)
self.model = self.model.to(device).eval()
self.kind = "open_clip"
self.processor = None
elif "/" in repo_or_kind and 'pubmed-clip' in repo_or_kind:
# PubMedCLIP через HF
self.model = HFCLIPModel.from_pretrained(repo_or_kind).to(device).eval()
self.processor = HFCLIPImageProcessor.from_pretrained(repo_or_kind)
self.kind = "hf_clip"
self.preprocess = None
elif "/" in repo_or_kind or repo_or_kind.startswith('redlessone/'):
# DermLIP через open_clip
assert HAS_OPENCLIP, "open_clip is required for DermLIP"
model_name = f"hf-hub:{repo_or_kind}"
self.model, self.preprocess, _ = open_clip.create_model_and_transforms(model_name)
self.model = self.model.to(device).eval()
self.kind = "open_clip"
self.processor = None
else:
# Fallback для других моделей, включая случаи когда передается просто тип модели
try:
# Пытаемся определить по названию
if 'biomedclip' in repo_or_kind.lower() or 'biomed' in repo_or_kind.lower():
assert HAS_OPENCLIP, "open_clip is required for BiomedCLIP"
model_name = "hf-hub:microsoft/BiomedCLIP-PubMedBERT_256-vit_base_patch16_224"
self.model, self.preprocess, _ = open_clip.create_model_and_transforms(model_name)
self.model = self.model.to(device).eval()
self.kind = "open_clip"
self.processor = None
elif 'dermlip' in repo_or_kind.lower():
assert HAS_OPENCLIP, "open_clip is required for DermLIP"
model_name = "hf-hub:redlessone/DermLIP_ViT-B-16"
self.model, self.preprocess, _ = open_clip.create_model_and_transforms(model_name)
self.model = self.model.to(device).eval()
self.kind = "open_clip"
self.processor = None
elif 'pubmed' in repo_or_kind.lower():
# PubMedCLIP через HF
repo_name = "flaviagiammarino/pubmed-clip-vit-base-patch32"
self.model = HFCLIPModel.from_pretrained(repo_name).to(device).eval()
self.processor = HFCLIPImageProcessor.from_pretrained(repo_name)
self.kind = "hf_clip"
self.preprocess = None
else:
raise ValueError(f"Unknown model type: {repo_or_kind}")
except Exception as e:
# Последняя попытка - попробовать как HF модель
try:
self.model = HFCLIPModel.from_pretrained(repo_or_kind).to(device).eval()
self.processor = HFCLIPImageProcessor.from_pretrained(repo_or_kind)
self.kind = "hf_clip"
self.preprocess = None
except:
raise ValueError(f"Failed to load model {repo_or_kind}: {e}")
# Определяем размер эмбеддинга
if self.kind == "open_clip":
with torch.no_grad():
img = Image.new('RGB', (224, 224), color=0)
x = self.preprocess(img).unsqueeze(0).to(device)
feat = self.model.encode_image(x)
self.embed_dim = int(feat.shape[-1])
else:
self.embed_dim = int(self.model.config.projection_dim)
@torch.inference_mode()
def encode_images(self, paths: List[str]) -> torch.Tensor:
ims = []
if self.kind == "open_clip":
for p in paths:
try:
im = Image.open(p).convert("RGB")
except:
im = Image.new("RGB", (224, 224), color=0)
ims.append(self.preprocess(im))
x = torch.stack(ims).to(self.device)
f = self.model.encode_image(x)
else:
# HF CLIP (PubMedCLIP)
for p in paths:
try:
im = Image.open(p).convert("RGB")
except:
im = Image.new("RGB", (224, 224), color=0)
ims.append(im)
proc = self.processor(images=ims, return_tensors='pt')
x = proc['pixel_values'].to(self.device)
f = self.model.get_image_features(pixel_values=x)
return F.normalize(f, dim=-1)
class Captioner(nn.Module):
def __init__(self, gpt2_name: str, clip_repo: str, prefix_tokens: int, prompt: str, device: str):
super().__init__()
self.device = device
self.prompt = prompt
self.tok = AutoTokenizer.from_pretrained(gpt2_name)
if self.tok.pad_token is None:
self.tok.pad_token = self.tok.eos_token
self.gpt2 = AutoModelForCausalLM.from_pretrained(gpt2_name).to(device).eval()
self.clip = CLIPBackend(clip_repo, device)
self.prefix = PrefixProjector(self.clip.embed_dim, int(self.gpt2.config.n_embd), prefix_tokens).to(device).eval()
@torch.inference_mode()
def generate(self, img_paths: List[str], prompt: Optional[str] = None) -> List[str]:
pr = prompt or self.prompt or ""
f = self.clip.encode_images(img_paths)
pref = self.prefix(f)
ids = self.tok([pr]*pref.size(0), return_tensors='pt', padding=True, truncation=True).to(self.device)
emb_prompt = self.gpt2.transformer.wte(ids['input_ids'])
inputs_embeds = torch.cat([pref, emb_prompt], dim=1)
attn = torch.ones(inputs_embeds.size()[:-1], dtype=torch.long, device=self.device)
gen = self.gpt2.generate(
inputs_embeds=inputs_embeds, attention_mask=attn,
max_new_tokens=60, min_new_tokens=24, num_beams=4,
no_repeat_ngram_size=4, repetition_penalty=1.15, length_penalty=0.6,
pad_token_id=self.tok.eos_token_id, eos_token_id=self.tok.eos_token_id, early_stopping=True
)
outs = self.tok.batch_decode(gen, skip_special_tokens=True)
res = []
for s in outs:
cut = s.find(pr)
if cut >= 0: s = s[cut+len(pr):]
res.append(s.strip())
return res
def load_model(repo_dir: str | os.PathLike) -> Captioner:
repo_dir = Path(repo_dir)
cfgs = sorted(repo_dir.glob("final_captioner_*.json"))
if not cfgs:
raise FileNotFoundError("final_captioner_*.json not found in repo snapshot")
data = json.loads(cfgs[-1].read_text(encoding='utf-8'))
gpt2 = data.get("gpt2_name", "gpt2-medium")
# Определяем CLIP репозиторий с поддержкой TimmModel
clip_repo = data.get("clip_weight_path", data.get("clip_repo", data.get("clip_backend_kind", "")))
# Если информация о CLIP не найдена в JSON, пытаемся определить по имени файла
if not clip_repo or clip_repo in ["open_clip", "hf_clip"]:
ckpts = sorted(repo_dir.glob("final_captioner_*.pt"))
if ckpts:
ckpt_name = str(ckpts[-1])
if "TimmModel" in ckpt_name:
clip_repo = "microsoft/BiomedCLIP-PubMedBERT_256-vit_base_patch16_224"
elif "VisionTransformer" in ckpt_name:
clip_repo = "redlessone/DermLIP_ViT-B-16"
elif "CLIPModel" in ckpt_name:
clip_repo = "flaviagiammarino/pubmed-clip-vit-base-patch32"
elif "biomedclip" in ckpt_name.lower():
clip_repo = "microsoft/BiomedCLIP-PubMedBERT_256-vit_base_patch16_224"
prefix_tokens = int(data.get("prefix_tokens", 32))
prompt = data.get("prompt", "Describe the skin lesion.")
device = "cuda" if torch.cuda.is_available() else "cpu"
model = Captioner(gpt2, clip_repo, prefix_tokens, prompt, device).to(device).eval()
# подгрузим state_dict
ckpts = sorted(repo_dir.glob("final_captioner_*.pt"))
if not ckpts:
raise FileNotFoundError("final_captioner_*.pt not found in repo snapshot")
state = torch.load(ckpts[-1], map_location="cpu")
sd = state.get("model", state)
model.load_state_dict(sd, strict=False)
return model
def generate(model: Captioner, img_paths: List[str], prompt: Optional[str] = None) -> List[str]:
return model.generate(img_paths, prompt=prompt)
|