--- license: other base_model: nvidia/segformer-b0-finetuned-ade-512-512 tags: - vision - image-segmentation - generated_from_trainer metrics: - precision model-index: - name: segformer_b0_finetuned_segment_pv_p100_4batch results: [] --- [Visualize in Weights & Biases](https://wandb.ai/mouadn773/segformer-pv-4batches/runs/tes0yime) # segformer_b0_finetuned_segment_pv_p100_4batch This model is a fine-tuned version of [nvidia/segformer-b0-finetuned-ade-512-512](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512) on the mouadenna/satellite_PV_dataset_train_test_v1 dataset. It achieves the following results on the evaluation set: - Loss: 0.0065 - Mean Iou: 0.8630 - Precision: 0.9115 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Precision | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:| | 0.5732 | 1.0 | 917 | 0.2901 | 0.4717 | 0.5866 | | 0.1327 | 2.0 | 1834 | 0.0327 | 0.6919 | 0.7689 | | 0.0272 | 3.0 | 2751 | 0.0138 | 0.7618 | 0.8768 | | 0.0128 | 4.0 | 3668 | 0.0098 | 0.7875 | 0.8206 | | 0.0081 | 5.0 | 4585 | 0.0077 | 0.8165 | 0.8512 | | 0.0061 | 6.0 | 5502 | 0.0071 | 0.8177 | 0.8795 | | 0.005 | 7.0 | 6419 | 0.0060 | 0.8303 | 0.8747 | | 0.0045 | 8.0 | 7336 | 0.0056 | 0.8459 | 0.8897 | | 0.004 | 9.0 | 8253 | 0.0057 | 0.8470 | 0.8851 | | 0.0038 | 10.0 | 9170 | 0.0058 | 0.8384 | 0.8761 | | 0.0034 | 11.0 | 10087 | 0.0056 | 0.8495 | 0.8966 | | 0.0033 | 12.0 | 11004 | 0.0053 | 0.8464 | 0.8956 | | 0.0031 | 13.0 | 11921 | 0.0060 | 0.8354 | 0.8843 | | 0.003 | 14.0 | 12838 | 0.0063 | 0.8414 | 0.8897 | | 0.0028 | 15.0 | 13755 | 0.0062 | 0.8466 | 0.9129 | | 0.0029 | 16.0 | 14672 | 0.0060 | 0.8480 | 0.9057 | | 0.0026 | 17.0 | 15589 | 0.0056 | 0.8559 | 0.9005 | | 0.0027 | 18.0 | 16506 | 0.0055 | 0.8571 | 0.9042 | | 0.0025 | 19.0 | 17423 | 0.0056 | 0.8571 | 0.9096 | | 0.0025 | 20.0 | 18340 | 0.0080 | 0.8329 | 0.9194 | | 0.0025 | 21.0 | 19257 | 0.0058 | 0.8567 | 0.8981 | | 0.0023 | 22.0 | 20174 | 0.0058 | 0.8624 | 0.9061 | | 0.0023 | 23.0 | 21091 | 0.0059 | 0.8599 | 0.9055 | | 0.0022 | 24.0 | 22008 | 0.0061 | 0.8601 | 0.9132 | | 0.0023 | 25.0 | 22925 | 0.0059 | 0.8603 | 0.9007 | | 0.0021 | 26.0 | 23842 | 0.0065 | 0.8594 | 0.9160 | | 0.0021 | 27.0 | 24759 | 0.0059 | 0.8636 | 0.9071 | | 0.0021 | 28.0 | 25676 | 0.0060 | 0.8650 | 0.9093 | | 0.002 | 29.0 | 26593 | 0.0061 | 0.8639 | 0.9158 | | 0.002 | 30.0 | 27510 | 0.0063 | 0.8621 | 0.9074 | | 0.002 | 31.0 | 28427 | 0.0064 | 0.8598 | 0.9081 | | 0.0021 | 32.0 | 29344 | 0.0064 | 0.8570 | 0.9129 | | 0.0019 | 33.0 | 30261 | 0.0064 | 0.8601 | 0.9086 | | 0.0019 | 34.0 | 31178 | 0.0062 | 0.8626 | 0.9146 | | 0.0019 | 35.0 | 32095 | 0.0066 | 0.8607 | 0.9060 | | 0.0018 | 36.0 | 33012 | 0.0064 | 0.8610 | 0.9056 | | 0.0018 | 37.0 | 33929 | 0.0065 | 0.8618 | 0.9072 | | 0.0018 | 38.0 | 34846 | 0.0063 | 0.8631 | 0.9094 | | 0.0018 | 39.0 | 35763 | 0.0064 | 0.8628 | 0.9126 | | 0.0018 | 40.0 | 36680 | 0.0065 | 0.8630 | 0.9115 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1