--- license: apache-2.0 base_model: morten-j/Mehdie_Extended-mBERT tags: - generated_from_trainer metrics: - f1 - precision - recall model-index: - name: fine_tuned_emBERT results: [] --- # fine_tuned_emBERT This model is a fine-tuned version of [morten-j/Mehdie_Extended-mBERT](https://huggingface.co/morten-j/Mehdie_Extended-mBERT) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1441 - F1: 0.7568 - F5: 0.7196 - Precision: 0.875 - Recall: 0.6667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 6 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | F5 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:---------:|:------:| | No log | 1.0 | 30 | 0.3540 | 0.0 | 0.0 | 0.0 | 0.0 | | No log | 2.0 | 60 | 0.2975 | 0.4348 | 0.4077 | 0.5263 | 0.3704 | | No log | 3.0 | 90 | 0.3550 | 0.45 | 0.3969 | 0.6923 | 0.3333 | | No log | 4.0 | 120 | 0.2962 | 0.5405 | 0.4598 | 1.0 | 0.3704 | | No log | 5.0 | 150 | 0.2629 | 0.5909 | 0.5437 | 0.7647 | 0.4815 | | No log | 6.0 | 180 | 0.2459 | 0.5778 | 0.5368 | 0.7222 | 0.4815 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.2.1+cu121 - Datasets 2.17.0 - Tokenizers 0.15.2