File size: 6,660 Bytes
5383233
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
from typing import Tuple, Dict
import requests
import random
import numpy as np
import gradio as gr
import torch
from PIL import Image
from diffusers import FluxInpaintPipeline

# Constants
MARKDOWN_TEXT = """
# FLUX.1 Inpainting 🔥
Shoutout to [Black Forest Labs](https://huggingface.co/black-forest-labs) for 
creating this amazing model, and a big thanks to [Gothos](https://github.com/Gothos) 
for taking it to the next level by enabling inpainting with the FLUX.
"""

MAX_SEED_VALUE = np.iinfo(np.int32).max
DEFAULT_IMAGE_SIZE = 1024
DEVICE_TYPE = "cuda" if torch.cuda.is_available() else "cpu"

# Model initialization
pipeline = FluxInpaintPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(DEVICE_TYPE)

def adjust_image_size(
    original_size: Tuple[int, int], max_dimension: int = DEFAULT_IMAGE_SIZE
) -> Tuple[int, int]:
    width, height = original_size
    scaling_factor = max_dimension / max(width, height)
    new_width = int(width * scaling_factor) - (int(width * scaling_factor) % 32)
    new_height = int(height * scaling_factor) - (int(height * scaling_factor) % 32)
    return new_width, new_height

def process_images(
    input_data: Dict,
    prompt: str,
    seed: int,
    randomize_seed: bool,
    strength: float,
    num_steps: int,
    progress=gr.Progress(track_tqdm=True)
):
    if not prompt:
        gr.Info("Please enter a text prompt.")
        return None, None

    background_img = input_data['background']
    mask_img = input_data['layers'][0]

    if background_img is None:
        gr.Info("Please upload an image.")
        return None, None

    if mask_img is None:
        gr.Info("Please draw a mask on the image.")
        return None, None

    new_width, new_height = adjust_image_size(background_img.size)
    resized_bg = background_img.resize((new_width, new_height), Image.LANCZOS)
    resized_mask = mask_img.resize((new_width, new_height), Image.LANCZOS)

    if randomize_seed:
        seed = random.randint(0, MAX_SEED_VALUE)
    generator = torch.Generator().manual_seed(seed)

    result_image = pipeline(
        prompt=prompt,
        image=resized_bg,
        mask_image=resized_mask,
        width=new_width,
        height=new_height,
        strength=strength,
        generator=generator,
        num_inference_steps=num_steps
    ).images[0]
    
    return result_image, resized_mask

# Gradio interface
with gr.Blocks() as demo:
    gr.Markdown(MARKDOWN_TEXT)
    
    with gr.Row():
        with gr.Column():
            img_editor = gr.ImageEditor(
                label='Image',
                type='pil',
                sources=["upload", "webcam"],
                image_mode='RGB',
                layers=False,
                brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed")
            )

            with gr.Row():
                text_input = gr.Text(
                    label="Prompt",
                    show_label=False,
                    max_lines=1,
                    placeholder="Enter your prompt",
                    container=False
                )
                submit_btn = gr.Button(
                    value='Submit', variant='primary', scale=0
                )

            with gr.Accordion("Advanced Settings", open=False):
                seed_slider = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED_VALUE,
                    step=1,
                    value=42
                )
                random_seed_chkbox = gr.Checkbox(
                    label="Randomize seed", value=True
                )

                with gr.Row():
                    strength_slider = gr.Slider(
                        label="Strength",
                        info="Indicates extent to transform the reference `image`.",
                        minimum=0,
                        maximum=1,
                        step=0.01,
                        value=0.85
                    )
                    steps_slider = gr.Slider(
                        label="Number of inference steps",
                        info="The number of denoising steps.",
                        minimum=1,
                        maximum=50,
                        step=1,
                        value=20
                    )
                    
        with gr.Column():
            output_img = gr.Image(
                type='pil', image_mode='RGB', label='Generated Image', format="png"
            )
            with gr.Accordion("Debug", open=False):
                output_mask = gr.Image(
                    type='pil', image_mode='RGB', label='Input Mask', format="png"
                )

    gr.Examples(
        fn=process_images,
        examples=[
            [
                {
                    "background": Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-image.png", stream=True).raw),
                    "layers": [Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-mask-2.png", stream=True).raw).convert("RGBA")],
                    "composite": Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-composite-2.png", stream=True).raw),
                },
                "little lion",
                42,
                False,
                0.85,
                30
            ],
            [
                {
                    "background": Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-image.png", stream=True).raw),
                    "layers": [Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-mask-3.png", stream=True).raw).convert("RGBA")],
                    "composite": Image.open(requests.get("https://media.roboflow.com/spaces/doge-2-composite-3.png", stream=True).raw),
                },
                "tribal tattoos",
                42,
                False,
                0.85,
                30
            ]
        ],
        inputs=[
            img_editor,
            text_input,
            seed_slider,
            random_seed_chkbox,
            strength_slider,
            steps_slider
        ],
        outputs=[
            output_img,
            output_mask
        ],
        run_on_click=True,
        cache_examples=True
    )

    submit_btn.click(
        fn=process_images,
        inputs=[
            img_editor,
            text_input,
            seed_slider,
            random_seed_chkbox,
            strength_slider,
            steps_slider
        ],
        outputs=[
            output_img,
            output_mask
        ]
    )

demo.launch(debug=False, show_error=True)