Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
base_model:
|
| 6 |
+
- Qwen/Qwen2.5-Coder-7B-Instruct
|
| 7 |
+
pipeline_tag: text-generation
|
| 8 |
+
---
|
| 9 |
+
|
| 10 |
+
## Model Description
|
| 11 |
+
|
| 12 |
+
This model is a fine-tuned variant of Qwen2.5-Coder-7B-Instruct, optimized for code-related tasks by training on a specialized code dataset. Fine-tuning was performed using the Hugging Face Transformers library, Low-Rank Adaptation(LoRA) and Parameter-Efficient Fine-Tuning (PEFT) techniques,.
|
| 13 |
+
|
| 14 |
+
- Intended Use:
|
| 15 |
+
The provided fine-tuned weights are ready for immediate use, making this model particularly suitable for developers and researchers working on code comprehension, generation, and related applications.
|
| 16 |
+
- Performance:
|
| 17 |
+
Users can anticipate enhanced performance on coding-specific tasks compared to the base model. The actual improvement varies based on the task and input data specifics.
|
| 18 |
+
|
| 19 |
+
## Use
|
| 20 |
+
|
| 21 |
+
The base model Qwen2.5-Coder-7B-Instruct needs to be downloaded and loaded in advance, then provide the following information: "## Problem Description: {} ## Test Cases: {} ## Error Code: {}"
|
| 22 |
+
|
| 23 |
+
```python
|
| 24 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 25 |
+
import torch
|
| 26 |
+
from peft import PeftModel
|
| 27 |
+
|
| 28 |
+
model_path = 'Qwen/Qwen2.5-Coder-7B-Instruct'
|
| 29 |
+
lora_path = 'Code-AiHelper'
|
| 30 |
+
|
| 31 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 32 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto",torch_dtype=torch.bfloat16)
|
| 33 |
+
model = PeftModel.from_pretrained(model, model_id=lora_path)
|
| 34 |
+
|
| 35 |
+
system_prompt = '你是一位经验丰富的Python编程专家和技术顾问,擅长分析Python题目和学生编写的代码。你的任务是理解题目要求和测试样例,分析学生代码,找出潜在的语法或逻辑错误,提供具体的错误位置和修复建议,并用专业且易懂的方式帮助学生改进代码。请以markdown格式返回你的答案。'
|
| 36 |
+
user_prompt = '''## 题目描述:{} ## 测试样例:{} ## 错误代码:{}'''
|
| 37 |
+
messages = [
|
| 38 |
+
{"role": "system", "content": system_prompt},
|
| 39 |
+
{"role": "user", "content": user_prompt}
|
| 40 |
+
]
|
| 41 |
+
|
| 42 |
+
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 43 |
+
model_inputs = tokenizer([text], return_tensors="pt").to('cuda')
|
| 44 |
+
generated_ids = model.generate(
|
| 45 |
+
model_inputs.input_ids,
|
| 46 |
+
max_new_tokens=1024
|
| 47 |
+
)
|
| 48 |
+
generated_ids = [
|
| 49 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
| 50 |
+
]
|
| 51 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
| 52 |
+
|
| 53 |
+
print(response)
|
| 54 |
+
```
|