{ "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220729.json", "version": "0.4.3", "changelog": { "0.4.3": "README.md fix", "0.4.2": "add name tag", "0.4.1": "modify dataset key name", "0.4.0": "update license files", "0.3.0": "Update to scripts", "0.2.0": "Unify naming", "0.1.0": "Initial version" }, "monai_version": "1.0.1", "pytorch_version": "1.13.0", "numpy_version": "1.21.2", "optional_packages_version": {}, "name": "Valve landmarks regression", "task": "Given long axis MR images of the heart, identify valve insertion points through the full cardiac cycle", "description": "This network is used to find where valves attach to heart to help construct 3D FEM models for computation. The output is an array of 10 2D coordinates.", "authors": "Eric Kerfoot", "copyright": "Copyright (c) Eric Kerfoot", "references": [ "Kerfoot, E, King, CE, Ismail, T, Nordsletten, D & Miller, R 2021, Estimation of Cardiac Valve Annuli Motion with Deep Learning. https://doi.org/10.1007/978-3-030-68107-4_15" ], "intended_use": "This is suitable for research purposes only", "image_classes": "Single channel data, intensity scaled to [0, 1]", "data_source": "Non-public dataset comprised of hand-annotated full cycle long axis MR images", "coordinate_values": { "0": 10, "1": 15, "2": 20, "3": 25, "4": 30, "5": 35, "6": 100, "7": 150, "8": 200, "9": 250 }, "coordinate_meanings": { "0": "mitral anterior 2CH", "1": "mitral posterior 2CH", "2": "mitral septal 3CH", "3": "mitral free wall 3CH", "4": "mitral septal 4CH", "5": "mitral free wall 4CH", "6": "aortic septal", "7": "aortic free wall", "8": "tricuspid septal", "9": "tricuspid free wall" }, "network_data_format": { "inputs": { "image": { "type": "image", "format": "magnitude", "modality": "MR", "num_channels": 1, "spatial_shape": [ 256, 256 ], "dtype": "float32", "value_range": [], "is_patch_data": false, "channel_def": { "0": "image" } } }, "outputs": { "pred": { "type": "tuples", "format": "points", "num_channels": 2, "spatial_shape": [ 2, 10 ], "dtype": "float32", "value_range": [], "is_patch_data": false, "channel_def": { "0": "Y Dimension", "1": "X Dimension" } } } } }