--- library_name: transformers license: apache-2.0 base_model: openai/whisper-medium.en tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-medium.en results: [] --- # whisper-medium.en This model is a fine-tuned version of [openai/whisper-medium.en](https://huggingface.co/openai/whisper-medium.en) on an [acc_dataset_v3](https://huggingface.co/datasets/monadical-labs/acc_dataset_v3) dataset. It achieves the following results on the evaluation set: - Loss: 0.4242 - Wer: 0.1293 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure See the training notebook [here](https://huggingface.co/monadical-labs/whisper-medium.en/blob/main/Finetuning-notebook-whisper-on-acc-data.ipynb): ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 4 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 25 - training_steps: 300 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 1.6045 | 2.2727 | 25 | 0.9047 | 0.1535 | | 0.2267 | 4.5455 | 50 | 0.4149 | 0.1262 | | 0.0207 | 6.8182 | 75 | 0.4454 | 0.1483 | | 0.0134 | 9.0909 | 100 | 0.4660 | 0.1388 | | 0.009 | 11.3636 | 125 | 0.4311 | 0.1462 | | 0.0051 | 13.6364 | 150 | 0.4368 | 0.1356 | | 0.0018 | 15.9091 | 175 | 0.4294 | 0.1462 | | 0.0003 | 18.1818 | 200 | 0.4234 | 0.1356 | | 0.0002 | 20.4545 | 225 | 0.4235 | 0.1325 | | 0.0002 | 22.7273 | 250 | 0.4239 | 0.1304 | | 0.0002 | 25.0 | 275 | 0.4240 | 0.1283 | | 0.0002 | 27.2727 | 300 | 0.4242 | 0.1293 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.6.0+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0