Upload Finetuning-notebook-whisper-on-acc-data.ipynb
Browse files
Finetuning-notebook-whisper-on-acc-data.ipynb
ADDED
@@ -0,0 +1,507 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"id": "c7f374d3-4c44-48cb-bba9-e18c099fbe38",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"!which python"
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "code",
|
15 |
+
"execution_count": null,
|
16 |
+
"id": "f0ae33f0-52f3-4d4c-88f9-28a458036be8",
|
17 |
+
"metadata": {},
|
18 |
+
"outputs": [],
|
19 |
+
"source": [
|
20 |
+
"pip_ouput = !pip install accelerate evaluate torch transformers\n",
|
21 |
+
"#print(pip_ouput)"
|
22 |
+
]
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"cell_type": "code",
|
26 |
+
"execution_count": null,
|
27 |
+
"id": "c8defb5e-962b-49c0-a32f-5f50f0e52f50",
|
28 |
+
"metadata": {},
|
29 |
+
"outputs": [],
|
30 |
+
"source": [
|
31 |
+
"from datasets import load_dataset\n",
|
32 |
+
"\n",
|
33 |
+
"acc_dataset = load_dataset(\"monadical-labs/acc_dataset_v3\")"
|
34 |
+
]
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"cell_type": "code",
|
38 |
+
"execution_count": null,
|
39 |
+
"id": "47d2aa85-7c2a-488f-abeb-448718571828",
|
40 |
+
"metadata": {},
|
41 |
+
"outputs": [],
|
42 |
+
"source": [
|
43 |
+
"from datasets import ClassLabel\n",
|
44 |
+
"import random\n",
|
45 |
+
"import pandas as pd\n",
|
46 |
+
"from IPython.display import display, HTML\n",
|
47 |
+
"\n",
|
48 |
+
"def show_random_elements(dataset, num_examples=10):\n",
|
49 |
+
" assert num_examples <= len(dataset), \"Can't pick more elements than there are in the dataset.\"\n",
|
50 |
+
" picks = []\n",
|
51 |
+
" for _ in range(num_examples):\n",
|
52 |
+
" pick = random.randint(0, len(dataset)-1)\n",
|
53 |
+
" while pick in picks:\n",
|
54 |
+
" pick = random.randint(0, len(dataset)-1)\n",
|
55 |
+
" picks.append(pick)\n",
|
56 |
+
" \n",
|
57 |
+
" df = pd.DataFrame(dataset[picks])\n",
|
58 |
+
" display(HTML(df.to_html()))"
|
59 |
+
]
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"cell_type": "code",
|
63 |
+
"execution_count": null,
|
64 |
+
"id": "34743004-7d8c-46b7-81ea-ad448ec450ed",
|
65 |
+
"metadata": {},
|
66 |
+
"outputs": [],
|
67 |
+
"source": [
|
68 |
+
"show_random_elements(acc_dataset[\"train\"].remove_columns([\"audio\"]))"
|
69 |
+
]
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"cell_type": "code",
|
73 |
+
"execution_count": null,
|
74 |
+
"id": "2199ae88-fdcd-48ed-a028-e263f6237494",
|
75 |
+
"metadata": {},
|
76 |
+
"outputs": [],
|
77 |
+
"source": [
|
78 |
+
"acc_dataset"
|
79 |
+
]
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"cell_type": "code",
|
83 |
+
"execution_count": null,
|
84 |
+
"id": "3eee3cc1-dbbd-47a5-b053-b052f087e070",
|
85 |
+
"metadata": {},
|
86 |
+
"outputs": [],
|
87 |
+
"source": [
|
88 |
+
"for split in acc_dataset:\n",
|
89 |
+
" acc_dataset[split] = acc_dataset[split].remove_columns([\"text\"])\n",
|
90 |
+
" acc_dataset[split] = acc_dataset[split].rename_column(\"text_with_digits\", \"text\")"
|
91 |
+
]
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"cell_type": "code",
|
95 |
+
"execution_count": null,
|
96 |
+
"id": "0fd7facb-809d-4209-9b93-27a06e2e044f",
|
97 |
+
"metadata": {},
|
98 |
+
"outputs": [],
|
99 |
+
"source": [
|
100 |
+
"show_random_elements(acc_dataset[\"train\"].remove_columns([\"audio\"]))"
|
101 |
+
]
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"cell_type": "code",
|
105 |
+
"execution_count": null,
|
106 |
+
"id": "471b4745-9398-4f32-a25d-cd5ba5d0150e",
|
107 |
+
"metadata": {},
|
108 |
+
"outputs": [],
|
109 |
+
"source": [
|
110 |
+
"from transformers import WhisperFeatureExtractor, WhisperForConditionalGeneration, WhisperProcessor, WhisperTokenizer\n",
|
111 |
+
"\n",
|
112 |
+
"model_name = \"openai/whisper-medium.en\"\n",
|
113 |
+
"\n",
|
114 |
+
"model = WhisperForConditionalGeneration.from_pretrained(model_name)\n",
|
115 |
+
"processor = WhisperProcessor.from_pretrained(model_name, language=\"English\", task=\"transcribe\")"
|
116 |
+
]
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"cell_type": "code",
|
120 |
+
"execution_count": null,
|
121 |
+
"id": "dafa7e33-4628-426a-863e-3b50b9027929",
|
122 |
+
"metadata": {},
|
123 |
+
"outputs": [],
|
124 |
+
"source": [
|
125 |
+
"input_str = acc_dataset['train'][9][\"text\"]\n",
|
126 |
+
"labels = processor.tokenizer(input_str).input_ids\n",
|
127 |
+
"decoded_with_special = processor.tokenizer.decode(labels, skip_special_tokens=False)\n",
|
128 |
+
"decoded_str = processor.tokenizer.decode(labels, skip_special_tokens=True)\n",
|
129 |
+
"\n",
|
130 |
+
"print(f\"Input: {input_str}\")\n",
|
131 |
+
"print(f\"Decoded w/ special: {decoded_with_special}\")\n",
|
132 |
+
"print(f\"Decoded w/out special: {decoded_str}\")\n",
|
133 |
+
"print(f\"Are equal: {input_str == decoded_str}\")"
|
134 |
+
]
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"cell_type": "code",
|
138 |
+
"execution_count": null,
|
139 |
+
"id": "f1561f97-4d9f-4f17-9b84-da135c55715b",
|
140 |
+
"metadata": {},
|
141 |
+
"outputs": [],
|
142 |
+
"source": [
|
143 |
+
"acc_dataset['train'][0][\"audio\"]"
|
144 |
+
]
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"cell_type": "code",
|
148 |
+
"execution_count": null,
|
149 |
+
"id": "fba3685d-bf62-40e1-bc83-71c4456cc824",
|
150 |
+
"metadata": {},
|
151 |
+
"outputs": [],
|
152 |
+
"source": [
|
153 |
+
"import IPython.display as ipd\n",
|
154 |
+
"import numpy as np\n",
|
155 |
+
"import random\n",
|
156 |
+
"\n",
|
157 |
+
"rand_int = random.randint(0, len(acc_dataset[\"train\"]))\n",
|
158 |
+
"\n",
|
159 |
+
"print(acc_dataset[\"train\"][rand_int][\"text\"])\n",
|
160 |
+
"#pd.Audio(data=np.asarray(acc_dataset[\"train\"][rand_int][\"audio\"][\"array\"]), autoplay=True, rate=16000)"
|
161 |
+
]
|
162 |
+
},
|
163 |
+
{
|
164 |
+
"cell_type": "code",
|
165 |
+
"execution_count": null,
|
166 |
+
"id": "8138249e-a571-4c52-9eb4-3fcdf0c10469",
|
167 |
+
"metadata": {},
|
168 |
+
"outputs": [],
|
169 |
+
"source": [
|
170 |
+
"rand_int = random.randint(0, len(acc_dataset[\"train\"]))\n",
|
171 |
+
"\n",
|
172 |
+
"print(\"Target text:\", acc_dataset[\"train\"][rand_int][\"text\"])\n",
|
173 |
+
"print(\"Input array shape:\", np.asarray(acc_dataset[\"train\"][rand_int][\"audio\"][\"array\"]).shape)\n",
|
174 |
+
"print(\"Sampling rate:\", acc_dataset[\"train\"][rand_int][\"audio\"][\"sampling_rate\"])"
|
175 |
+
]
|
176 |
+
},
|
177 |
+
{
|
178 |
+
"cell_type": "code",
|
179 |
+
"execution_count": null,
|
180 |
+
"id": "0c49cc8d-c108-46a9-8f6c-6e5bf5d09c1c",
|
181 |
+
"metadata": {},
|
182 |
+
"outputs": [],
|
183 |
+
"source": [
|
184 |
+
"def prepare_dataset(batch):\n",
|
185 |
+
" audio = batch[\"audio\"]\n",
|
186 |
+
"\n",
|
187 |
+
" # batched output is \"un-batched\" to ensure mapping is correct\n",
|
188 |
+
" batch[\"input_features\"] = processor.feature_extractor(audio[\"array\"], sampling_rate=audio[\"sampling_rate\"]).input_features[0]\n",
|
189 |
+
" \n",
|
190 |
+
" batch[\"labels\"] = processor.tokenizer(batch[\"text\"]).input_ids\n",
|
191 |
+
" \n",
|
192 |
+
" return batch"
|
193 |
+
]
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"cell_type": "code",
|
197 |
+
"execution_count": null,
|
198 |
+
"id": "d3c2946e-a5aa-4572-9717-3ab86878d121",
|
199 |
+
"metadata": {},
|
200 |
+
"outputs": [],
|
201 |
+
"source": [
|
202 |
+
"acc_dataset = acc_dataset.map(prepare_dataset)"
|
203 |
+
]
|
204 |
+
},
|
205 |
+
{
|
206 |
+
"cell_type": "code",
|
207 |
+
"execution_count": null,
|
208 |
+
"id": "5f1f0015-734f-44fa-bce9-1a605df36280",
|
209 |
+
"metadata": {},
|
210 |
+
"outputs": [],
|
211 |
+
"source": [
|
212 |
+
"import torch\n",
|
213 |
+
"\n",
|
214 |
+
"from dataclasses import dataclass\n",
|
215 |
+
"from typing import Any, Dict, List, Union\n",
|
216 |
+
"\n",
|
217 |
+
"@dataclass\n",
|
218 |
+
"class DataCollatorSpeechSeq2SeqWithPadding:\n",
|
219 |
+
" processor: Any\n",
|
220 |
+
" decoder_start_token_id: int\n",
|
221 |
+
"\n",
|
222 |
+
" def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:\n",
|
223 |
+
" input_features = [{\"input_features\": feature[\"input_features\"]} for feature in features]\n",
|
224 |
+
" batch = self.processor.feature_extractor.pad(input_features, return_tensors=\"pt\")\n",
|
225 |
+
"\n",
|
226 |
+
" label_features = [{\"input_ids\": feature[\"labels\"]} for feature in features]\n",
|
227 |
+
" labels_batch = self.processor.tokenizer.pad(label_features, return_tensors=\"pt\")\n",
|
228 |
+
"\n",
|
229 |
+
" labels = labels_batch[\"input_ids\"].masked_fill(labels_batch.attention_mask.ne(1), -100)\n",
|
230 |
+
"\n",
|
231 |
+
" if (labels[:, 0] == self.decoder_start_token_id).all().cpu().item():\n",
|
232 |
+
" labels = labels[:, 1:]\n",
|
233 |
+
"\n",
|
234 |
+
" batch[\"labels\"] = labels\n",
|
235 |
+
"\n",
|
236 |
+
" return batch"
|
237 |
+
]
|
238 |
+
},
|
239 |
+
{
|
240 |
+
"cell_type": "code",
|
241 |
+
"execution_count": null,
|
242 |
+
"id": "6519ec7b-dc55-4c37-90f7-2822c40e3e52",
|
243 |
+
"metadata": {},
|
244 |
+
"outputs": [],
|
245 |
+
"source": [
|
246 |
+
"data_collator = DataCollatorSpeechSeq2SeqWithPadding(\n",
|
247 |
+
" processor=processor,\n",
|
248 |
+
" decoder_start_token_id=model.config.decoder_start_token_id,\n",
|
249 |
+
")"
|
250 |
+
]
|
251 |
+
},
|
252 |
+
{
|
253 |
+
"cell_type": "code",
|
254 |
+
"execution_count": null,
|
255 |
+
"id": "f05bd4f0-cb15-4729-a8dd-610baaee6c8f",
|
256 |
+
"metadata": {},
|
257 |
+
"outputs": [],
|
258 |
+
"source": [
|
259 |
+
"import evaluate \n",
|
260 |
+
"\n",
|
261 |
+
"\n",
|
262 |
+
"wer_metric = evaluate.load(\"wer\")\n",
|
263 |
+
"cer_metric = evaluate.load(\"cer\")"
|
264 |
+
]
|
265 |
+
},
|
266 |
+
{
|
267 |
+
"cell_type": "code",
|
268 |
+
"execution_count": null,
|
269 |
+
"id": "b75cbad2-2487-4cd2-b20d-98dbc5631fa6",
|
270 |
+
"metadata": {},
|
271 |
+
"outputs": [],
|
272 |
+
"source": [
|
273 |
+
"def compute_metrics(pred):\n",
|
274 |
+
" pred_ids = pred.predictions\n",
|
275 |
+
" label_ids = pred.label_ids\n",
|
276 |
+
"\n",
|
277 |
+
" label_ids[label_ids == -100] = processor.tokenizer.pad_token_id\n",
|
278 |
+
"\n",
|
279 |
+
" pred_str = processor.tokenizer.batch_decode(pred_ids, skip_special_tokens=True)\n",
|
280 |
+
" label_str = processor.tokenizer.batch_decode(label_ids, skip_special_tokens=True)\n",
|
281 |
+
"\n",
|
282 |
+
" wer = wer_metric.compute(predictions=pred_str, references=label_str)\n",
|
283 |
+
"\n",
|
284 |
+
" return {\"wer\": wer}"
|
285 |
+
]
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"cell_type": "code",
|
289 |
+
"execution_count": null,
|
290 |
+
"id": "adb7eaaa-e18d-4716-af7a-0c5fdc24a95c",
|
291 |
+
"metadata": {},
|
292 |
+
"outputs": [],
|
293 |
+
"source": [
|
294 |
+
"from transformers import Seq2SeqTrainingArguments\n",
|
295 |
+
"\n",
|
296 |
+
"dir_for_training_artifacts = \"training-artifacts-\" + model_name\n",
|
297 |
+
"\n",
|
298 |
+
"eval_step_count = 25\n",
|
299 |
+
"max_step_count = 300\n",
|
300 |
+
"\n",
|
301 |
+
"training_args = Seq2SeqTrainingArguments(\n",
|
302 |
+
" evaluation_strategy=\"steps\",\n",
|
303 |
+
" eval_steps=eval_step_count,\n",
|
304 |
+
" fp16=True,\n",
|
305 |
+
" generation_max_length=225,\n",
|
306 |
+
" gradient_checkpointing=True,\n",
|
307 |
+
" greater_is_better=False,\n",
|
308 |
+
" learning_rate=5e-5,\n",
|
309 |
+
" load_best_model_at_end=True,\n",
|
310 |
+
" logging_steps=eval_step_count,\n",
|
311 |
+
" max_steps=max_step_count,\n",
|
312 |
+
" metric_for_best_model=\"wer\",\n",
|
313 |
+
" output_dir= dir_for_training_artifacts,\n",
|
314 |
+
" per_device_eval_batch_size=4,\n",
|
315 |
+
" per_device_train_batch_size=32,\n",
|
316 |
+
" predict_with_generate=True,\n",
|
317 |
+
" push_to_hub=True,\n",
|
318 |
+
" warmup_steps=eval_step_count,\n",
|
319 |
+
")"
|
320 |
+
]
|
321 |
+
},
|
322 |
+
{
|
323 |
+
"cell_type": "code",
|
324 |
+
"execution_count": null,
|
325 |
+
"id": "1f6db0db-6ce1-4a59-bf49-d8f776fa3a67",
|
326 |
+
"metadata": {},
|
327 |
+
"outputs": [],
|
328 |
+
"source": [
|
329 |
+
"from transformers import Seq2SeqTrainer\n",
|
330 |
+
"\n",
|
331 |
+
"trainer = Seq2SeqTrainer(\n",
|
332 |
+
" args=training_args,\n",
|
333 |
+
" model=model,\n",
|
334 |
+
" train_dataset=acc_dataset[\"train\"],\n",
|
335 |
+
" eval_dataset=acc_dataset[\"validate\"],\n",
|
336 |
+
" data_collator=data_collator,\n",
|
337 |
+
" compute_metrics=compute_metrics,\n",
|
338 |
+
" tokenizer=processor.feature_extractor,\n",
|
339 |
+
")"
|
340 |
+
]
|
341 |
+
},
|
342 |
+
{
|
343 |
+
"cell_type": "code",
|
344 |
+
"execution_count": null,
|
345 |
+
"id": "08212258-db86-44d6-b4f3-9fb936ceee85",
|
346 |
+
"metadata": {},
|
347 |
+
"outputs": [],
|
348 |
+
"source": [
|
349 |
+
"# Authenticate with HF if you haven't already. \n",
|
350 |
+
"\n",
|
351 |
+
"#from huggingface_hub import notebook_login\n",
|
352 |
+
"\n",
|
353 |
+
"#notebook_login()"
|
354 |
+
]
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"cell_type": "code",
|
358 |
+
"execution_count": null,
|
359 |
+
"id": "0940c20f-6d2f-4643-8aa4-ecd2e74f29ab",
|
360 |
+
"metadata": {},
|
361 |
+
"outputs": [],
|
362 |
+
"source": [
|
363 |
+
"trainer.train()"
|
364 |
+
]
|
365 |
+
},
|
366 |
+
{
|
367 |
+
"cell_type": "code",
|
368 |
+
"execution_count": null,
|
369 |
+
"id": "0434e129-05c5-469b-8e2c-1b16bdfd2432",
|
370 |
+
"metadata": {},
|
371 |
+
"outputs": [],
|
372 |
+
"source": [
|
373 |
+
"trainer.push_to_hub()"
|
374 |
+
]
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"cell_type": "code",
|
378 |
+
"execution_count": null,
|
379 |
+
"id": "4d4f0605-9b4a-46d3-912c-cda97d3a6b9e",
|
380 |
+
"metadata": {},
|
381 |
+
"outputs": [],
|
382 |
+
"source": [
|
383 |
+
"def map_to_result(batch):\n",
|
384 |
+
" with torch.no_grad():\n",
|
385 |
+
" input_values = torch.tensor(batch[\"input_features\"], device=\"cuda\").unsqueeze(0)\n",
|
386 |
+
" predicted_ids = model.generate(input_values)\n",
|
387 |
+
"\n",
|
388 |
+
" batch[\"pred_str\"] = processor.batch_decode(predicted_ids, skip_special_tokens=False)[0]\n",
|
389 |
+
" return batch"
|
390 |
+
]
|
391 |
+
},
|
392 |
+
{
|
393 |
+
"cell_type": "code",
|
394 |
+
"execution_count": null,
|
395 |
+
"id": "907d2b0c-23c1-4862-900c-a020d7d8b8c0",
|
396 |
+
"metadata": {},
|
397 |
+
"outputs": [],
|
398 |
+
"source": [
|
399 |
+
"results = acc_dataset[\"test\"].map(map_to_result)\n",
|
400 |
+
"#results = acc_dataset[\"validate\"].map(map_to_result)\n",
|
401 |
+
"#results = acc_dataset[\"train\"].map(map_to_result)"
|
402 |
+
]
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"cell_type": "code",
|
406 |
+
"execution_count": null,
|
407 |
+
"id": "bb25801b-adb7-48e0-9849-473dec2ee765",
|
408 |
+
"metadata": {},
|
409 |
+
"outputs": [],
|
410 |
+
"source": [
|
411 |
+
"import evaluate \n",
|
412 |
+
"\n",
|
413 |
+
"\n",
|
414 |
+
"wer_metric = evaluate.load(\"wer\")\n",
|
415 |
+
"cer_metric = evaluate.load(\"cer\")"
|
416 |
+
]
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"cell_type": "code",
|
420 |
+
"execution_count": null,
|
421 |
+
"id": "8ee6948b-f8ea-4f39-8f33-0519ba8d8d85",
|
422 |
+
"metadata": {},
|
423 |
+
"outputs": [],
|
424 |
+
"source": [
|
425 |
+
"results[\"pred_str\"][0]"
|
426 |
+
]
|
427 |
+
},
|
428 |
+
{
|
429 |
+
"cell_type": "code",
|
430 |
+
"execution_count": null,
|
431 |
+
"id": "d3c3da77-c625-45fc-be34-ec43e2dbd6c2",
|
432 |
+
"metadata": {},
|
433 |
+
"outputs": [],
|
434 |
+
"source": [
|
435 |
+
"print(\"WER: {:.3f}\".format(wer_metric.compute(predictions=results[\"pred_str\"], references=results[\"text\"])))\n",
|
436 |
+
"print(\"CER: {:.3f}\".format(cer_metric.compute(predictions=results[\"pred_str\"], references=results[\"text\"])))"
|
437 |
+
]
|
438 |
+
},
|
439 |
+
{
|
440 |
+
"cell_type": "code",
|
441 |
+
"execution_count": null,
|
442 |
+
"id": "ce444b9a-c222-4c01-a237-32b255a4617d",
|
443 |
+
"metadata": {},
|
444 |
+
"outputs": [],
|
445 |
+
"source": [
|
446 |
+
"def show_random_elements(dataset, num_examples=10):\n",
|
447 |
+
" assert num_examples <= len(dataset), \"Can't pick more elements than there are in the dataset.\"\n",
|
448 |
+
" picks = []\n",
|
449 |
+
" for _ in range(num_examples):\n",
|
450 |
+
" pick = random.randint(0, len(dataset)-1)\n",
|
451 |
+
" while pick in picks:\n",
|
452 |
+
" pick = random.randint(0, len(dataset)-1)\n",
|
453 |
+
" picks.append(pick)\n",
|
454 |
+
" \n",
|
455 |
+
" df = pd.DataFrame(dataset[picks])\n",
|
456 |
+
" display(HTML(df.to_html()))"
|
457 |
+
]
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"cell_type": "code",
|
461 |
+
"execution_count": null,
|
462 |
+
"id": "3b5f15fa-8099-49fd-9f30-75db02fae4e1",
|
463 |
+
"metadata": {},
|
464 |
+
"outputs": [],
|
465 |
+
"source": [
|
466 |
+
"show_random_elements(results.select_columns([\"text\", \"pred_str\"]))"
|
467 |
+
]
|
468 |
+
},
|
469 |
+
{
|
470 |
+
"cell_type": "code",
|
471 |
+
"execution_count": null,
|
472 |
+
"id": "b4d29c7b-9610-4fc5-a30d-9ebffb41dd1d",
|
473 |
+
"metadata": {},
|
474 |
+
"outputs": [],
|
475 |
+
"source": [
|
476 |
+
"with torch.no_grad():\n",
|
477 |
+
" predicted_ids = model.generate(torch.tensor(acc_dataset[\"train\"][:1][\"input_features\"], device=\"cuda\"))\n",
|
478 |
+
"\n",
|
479 |
+
"print(predicted_ids)\n",
|
480 |
+
"\n",
|
481 |
+
"# convert ids to tokens\n",
|
482 |
+
"processor.batch_decode(predicted_ids, skip_special_tokens=False)[0]"
|
483 |
+
]
|
484 |
+
}
|
485 |
+
],
|
486 |
+
"metadata": {
|
487 |
+
"kernelspec": {
|
488 |
+
"display_name": "Python 3 (ipykernel)",
|
489 |
+
"language": "python",
|
490 |
+
"name": "python3"
|
491 |
+
},
|
492 |
+
"language_info": {
|
493 |
+
"codemirror_mode": {
|
494 |
+
"name": "ipython",
|
495 |
+
"version": 3
|
496 |
+
},
|
497 |
+
"file_extension": ".py",
|
498 |
+
"mimetype": "text/x-python",
|
499 |
+
"name": "python",
|
500 |
+
"nbconvert_exporter": "python",
|
501 |
+
"pygments_lexer": "ipython3",
|
502 |
+
"version": "3.10.12"
|
503 |
+
}
|
504 |
+
},
|
505 |
+
"nbformat": 4,
|
506 |
+
"nbformat_minor": 5
|
507 |
+
}
|