--- library_name: transformers license: apache-2.0 base_model: facebook/wav2vec2-large-960h tags: - generated_from_trainer metrics: - wer model-index: - name: wav2vec2-large-960h results: [] --- # wav2vec2-large-960h This model is a fine-tuned version of [facebook/wav2vec2-large-960h](https://huggingface.co/facebook/wav2vec2-large-960h) on an [acc_dataset_v2](https://huggingface.co/datasets/monadical-labs/acc_dataset_v2)" dataset (commit: [a41c520](https://huggingface.co/datasets/monadical-labs/acc_dataset_v2/commit/a41c5204b95bcf293ac5ee1a0da94170374b1cb0)). It achieves the following results on the evaluation set: - Loss: 0.6286 - Wer: 0.1538 ## Model description This is a voice-2-text transcription model specialized for the acc dataset. ## Training and evaluation data Training was based on the training set in [acc_dataset_v2](https://huggingface.co/datasets/monadical-labs/acc_dataset_v2) and evaluation based on the validation and test sets in the same dataset. ## Training procedure See the Jupyter notebook [Finetuning-notebook-wav2vec2-large-960h-on-acc-data](https://huggingface.co/ilokavat/wav2vec2-large-960h/blob/main/Finetuning-notebook-wav2vec2-large-960h-on-acc-data.ipynb) for the full training procedure. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 15 - num_epochs: 128 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:--------:|:----:|:---------------:|:------:| | 1.2379 | 8.3333 | 50 | 0.6501 | 0.3056 | | 0.4865 | 16.6667 | 100 | 0.7069 | 0.2790 | | 0.3054 | 25.0 | 150 | 0.6598 | 0.2369 | | 0.2308 | 33.3333 | 200 | 0.6517 | 0.2215 | | 0.1793 | 41.6667 | 250 | 0.6884 | 0.2103 | | 0.1379 | 50.0 | 300 | 0.6418 | 0.1949 | | 0.1253 | 58.3333 | 350 | 0.7004 | 0.1918 | | 0.0988 | 66.6667 | 400 | 0.6059 | 0.1846 | | 0.088 | 75.0 | 450 | 0.6507 | 0.1826 | | 0.0773 | 83.3333 | 500 | 0.5473 | 0.1682 | | 0.0686 | 91.6667 | 550 | 0.6027 | 0.1682 | | 0.0643 | 100.0 | 600 | 0.6192 | 0.1713 | | 0.0595 | 108.3333 | 650 | 0.6119 | 0.1703 | | 0.0562 | 116.6667 | 700 | 0.5953 | 0.16 | | 0.0507 | 125.0 | 750 | 0.6286 | 0.1538 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.6.0+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0