Upload Finetuning-notebook-wav2vec2-large-960h-on-acc-data.ipynb
Browse filesJupyter notebook creating this model based on fine-tuning [facebook/wav2vec2-large-960h](https://huggingface.co/facebook/wav2vec2-large-960h) with the [acc_dataset_v2](https://huggingface.co/datasets/monadical-labs/acc_dataset_v2).
Finetuning-notebook-wav2vec2-large-960h-on-acc-data.ipynb
ADDED
@@ -0,0 +1,570 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"id": "c7f374d3-4c44-48cb-bba9-e18c099fbe38",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"!which python"
|
11 |
+
]
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "code",
|
15 |
+
"execution_count": null,
|
16 |
+
"id": "f0ae33f0-52f3-4d4c-88f9-28a458036be8",
|
17 |
+
"metadata": {},
|
18 |
+
"outputs": [],
|
19 |
+
"source": [
|
20 |
+
"pip_ouput = !pip install accelerate evaluate torch transformers\n",
|
21 |
+
"#print(pip_ouput)"
|
22 |
+
]
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"cell_type": "code",
|
26 |
+
"execution_count": null,
|
27 |
+
"id": "c8defb5e-962b-49c0-a32f-5f50f0e52f50",
|
28 |
+
"metadata": {},
|
29 |
+
"outputs": [],
|
30 |
+
"source": [
|
31 |
+
"from datasets import load_dataset\n",
|
32 |
+
"\n",
|
33 |
+
"acc_dataset = load_dataset(\"monadical-labs/acc_dataset_v2\")"
|
34 |
+
]
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"cell_type": "code",
|
38 |
+
"execution_count": null,
|
39 |
+
"id": "58ea0320-19d7-4a98-954d-0d3302060e7a",
|
40 |
+
"metadata": {},
|
41 |
+
"outputs": [],
|
42 |
+
"source": [
|
43 |
+
"import re\n",
|
44 |
+
"\n",
|
45 |
+
"acc_dataset = acc_dataset.filter(lambda x: not re.search(r'\\d', x[\"text\"]))"
|
46 |
+
]
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"cell_type": "code",
|
50 |
+
"execution_count": null,
|
51 |
+
"id": "47d2aa85-7c2a-488f-abeb-448718571828",
|
52 |
+
"metadata": {},
|
53 |
+
"outputs": [],
|
54 |
+
"source": [
|
55 |
+
"from datasets import ClassLabel\n",
|
56 |
+
"import random\n",
|
57 |
+
"import pandas as pd\n",
|
58 |
+
"from IPython.display import display, HTML\n",
|
59 |
+
"\n",
|
60 |
+
"def show_random_elements(dataset, num_examples=10):\n",
|
61 |
+
" assert num_examples <= len(dataset), \"Can't pick more elements than there are in the dataset.\"\n",
|
62 |
+
" picks = []\n",
|
63 |
+
" for _ in range(num_examples):\n",
|
64 |
+
" pick = random.randint(0, len(dataset)-1)\n",
|
65 |
+
" while pick in picks:\n",
|
66 |
+
" pick = random.randint(0, len(dataset)-1)\n",
|
67 |
+
" picks.append(pick)\n",
|
68 |
+
" \n",
|
69 |
+
" df = pd.DataFrame(dataset[picks])\n",
|
70 |
+
" display(HTML(df.to_html()))"
|
71 |
+
]
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"cell_type": "code",
|
75 |
+
"execution_count": null,
|
76 |
+
"id": "34743004-7d8c-46b7-81ea-ad448ec450ed",
|
77 |
+
"metadata": {},
|
78 |
+
"outputs": [],
|
79 |
+
"source": [
|
80 |
+
"show_random_elements(acc_dataset[\"train\"].remove_columns([\"audio\"]))"
|
81 |
+
]
|
82 |
+
},
|
83 |
+
{
|
84 |
+
"cell_type": "code",
|
85 |
+
"execution_count": null,
|
86 |
+
"id": "15beb241-e9d1-4baf-9375-10d1f6824a91",
|
87 |
+
"metadata": {},
|
88 |
+
"outputs": [],
|
89 |
+
"source": [
|
90 |
+
"import re\n",
|
91 |
+
"chars_to_ignore_regex = '[\\,\\?\\.\\!\\-\\;\\:\\\"]'\n",
|
92 |
+
"\n",
|
93 |
+
"def remove_special_characters(batch):\n",
|
94 |
+
" batch[\"text\"] = re.sub(chars_to_ignore_regex, '', batch[\"text\"]).upper()\n",
|
95 |
+
" return batch"
|
96 |
+
]
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"cell_type": "code",
|
100 |
+
"execution_count": null,
|
101 |
+
"id": "6791e858-e2a0-4494-83d5-0b2c30ded226",
|
102 |
+
"metadata": {},
|
103 |
+
"outputs": [],
|
104 |
+
"source": [
|
105 |
+
"acc_dataset = acc_dataset.map(remove_special_characters)"
|
106 |
+
]
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"cell_type": "code",
|
110 |
+
"execution_count": null,
|
111 |
+
"id": "2199ae88-fdcd-48ed-a028-e263f6237494",
|
112 |
+
"metadata": {},
|
113 |
+
"outputs": [],
|
114 |
+
"source": [
|
115 |
+
"acc_dataset"
|
116 |
+
]
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"cell_type": "code",
|
120 |
+
"execution_count": null,
|
121 |
+
"id": "0fd7facb-809d-4209-9b93-27a06e2e044f",
|
122 |
+
"metadata": {},
|
123 |
+
"outputs": [],
|
124 |
+
"source": [
|
125 |
+
"show_random_elements(acc_dataset[\"train\"].remove_columns([\"audio\"]))"
|
126 |
+
]
|
127 |
+
},
|
128 |
+
{
|
129 |
+
"cell_type": "code",
|
130 |
+
"execution_count": null,
|
131 |
+
"id": "471b4745-9398-4f32-a25d-cd5ba5d0150e",
|
132 |
+
"metadata": {},
|
133 |
+
"outputs": [],
|
134 |
+
"source": [
|
135 |
+
"from transformers import AutoModelForCTC, Wav2Vec2Processor\n",
|
136 |
+
"\n",
|
137 |
+
"model_repo_name = \"facebook/wav2vec2-large-960h\"\n",
|
138 |
+
"\n",
|
139 |
+
"processor = Wav2Vec2Processor.from_pretrained(model_repo_name)"
|
140 |
+
]
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"cell_type": "code",
|
144 |
+
"execution_count": null,
|
145 |
+
"id": "f1561f97-4d9f-4f17-9b84-da135c55715b",
|
146 |
+
"metadata": {},
|
147 |
+
"outputs": [],
|
148 |
+
"source": [
|
149 |
+
"acc_dataset['train'][0][\"audio\"]"
|
150 |
+
]
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"cell_type": "code",
|
154 |
+
"execution_count": null,
|
155 |
+
"id": "fba3685d-bf62-40e1-bc83-71c4456cc824",
|
156 |
+
"metadata": {},
|
157 |
+
"outputs": [],
|
158 |
+
"source": [
|
159 |
+
"import IPython.display as ipd\n",
|
160 |
+
"import numpy as np\n",
|
161 |
+
"import random\n",
|
162 |
+
"\n",
|
163 |
+
"rand_int = random.randint(0, len(acc_dataset[\"train\"]))\n",
|
164 |
+
"\n",
|
165 |
+
"print(acc_dataset[\"train\"][rand_int][\"text\"])\n",
|
166 |
+
"ipd.Audio(data=np.asarray(acc_dataset[\"train\"][rand_int][\"audio\"][\"array\"]), autoplay=True, rate=16000)"
|
167 |
+
]
|
168 |
+
},
|
169 |
+
{
|
170 |
+
"cell_type": "code",
|
171 |
+
"execution_count": null,
|
172 |
+
"id": "8138249e-a571-4c52-9eb4-3fcdf0c10469",
|
173 |
+
"metadata": {},
|
174 |
+
"outputs": [],
|
175 |
+
"source": [
|
176 |
+
"rand_int = random.randint(0, len(acc_dataset[\"train\"]))\n",
|
177 |
+
"\n",
|
178 |
+
"print(\"Target text:\", acc_dataset[\"train\"][rand_int][\"text\"])\n",
|
179 |
+
"print(\"Input array shape:\", np.asarray(acc_dataset[\"train\"][rand_int][\"audio\"][\"array\"]).shape)\n",
|
180 |
+
"print(\"Sampling rate:\", acc_dataset[\"train\"][rand_int][\"audio\"][\"sampling_rate\"])"
|
181 |
+
]
|
182 |
+
},
|
183 |
+
{
|
184 |
+
"cell_type": "code",
|
185 |
+
"execution_count": null,
|
186 |
+
"id": "0c49cc8d-c108-46a9-8f6c-6e5bf5d09c1c",
|
187 |
+
"metadata": {},
|
188 |
+
"outputs": [],
|
189 |
+
"source": [
|
190 |
+
"def prepare_dataset(batch):\n",
|
191 |
+
" audio = batch[\"audio\"]\n",
|
192 |
+
"\n",
|
193 |
+
" # batched output is \"un-batched\" to ensure mapping is correct\n",
|
194 |
+
" batch[\"input_values\"] = processor(audio[\"array\"], sampling_rate=audio[\"sampling_rate\"]).input_values[0]\n",
|
195 |
+
" \n",
|
196 |
+
" batch[\"labels\"] = processor.tokenizer(batch[\"text\"]).input_ids\n",
|
197 |
+
" \n",
|
198 |
+
" return batch"
|
199 |
+
]
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"cell_type": "code",
|
203 |
+
"execution_count": null,
|
204 |
+
"id": "9e84b0ac-85bc-4901-b605-0de1f9db716b",
|
205 |
+
"metadata": {},
|
206 |
+
"outputs": [],
|
207 |
+
"source": [
|
208 |
+
"acc_dataset"
|
209 |
+
]
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"cell_type": "code",
|
213 |
+
"execution_count": null,
|
214 |
+
"id": "d3c2946e-a5aa-4572-9717-3ab86878d121",
|
215 |
+
"metadata": {},
|
216 |
+
"outputs": [],
|
217 |
+
"source": [
|
218 |
+
"acc_dataset = acc_dataset.map(prepare_dataset, remove_columns=acc_dataset.column_names[\"train\"], num_proc=4)"
|
219 |
+
]
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"cell_type": "code",
|
223 |
+
"execution_count": null,
|
224 |
+
"id": "300ce7ac-5d0a-40cf-abe9-0c27149ffded",
|
225 |
+
"metadata": {},
|
226 |
+
"outputs": [],
|
227 |
+
"source": [
|
228 |
+
"print(acc_dataset[\"train\"][0][\"labels\"])"
|
229 |
+
]
|
230 |
+
},
|
231 |
+
{
|
232 |
+
"cell_type": "code",
|
233 |
+
"execution_count": null,
|
234 |
+
"id": "5f1f0015-734f-44fa-bce9-1a605df36280",
|
235 |
+
"metadata": {},
|
236 |
+
"outputs": [],
|
237 |
+
"source": [
|
238 |
+
"from dataclasses import dataclass, field\n",
|
239 |
+
"import torch\n",
|
240 |
+
"from typing import Any, Dict, List, Optional, Union\n",
|
241 |
+
"\n",
|
242 |
+
"@dataclass\n",
|
243 |
+
"class DataCollatorCTCWithPadding:\n",
|
244 |
+
" processor: Wav2Vec2Processor\n",
|
245 |
+
" padding: Union[bool, str] = True\n",
|
246 |
+
" max_length: Optional[int] = None\n",
|
247 |
+
" max_length_labels: Optional[int] = None\n",
|
248 |
+
" pad_to_multiple_of: Optional[int] = None\n",
|
249 |
+
" pad_to_multiple_of_labels: Optional[int] = None\n",
|
250 |
+
"\n",
|
251 |
+
" def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:\n",
|
252 |
+
" input_features = [{\"input_values\": feature[\"input_values\"]} for feature in features]\n",
|
253 |
+
" label_features = [{\"input_ids\": feature[\"labels\"]} for feature in features]\n",
|
254 |
+
"\n",
|
255 |
+
" batch = self.processor.pad(\n",
|
256 |
+
" input_features,\n",
|
257 |
+
" padding=self.padding,\n",
|
258 |
+
" max_length=self.max_length,\n",
|
259 |
+
" pad_to_multiple_of=self.pad_to_multiple_of,\n",
|
260 |
+
" return_tensors=\"pt\",\n",
|
261 |
+
" )\n",
|
262 |
+
" with self.processor.as_target_processor():\n",
|
263 |
+
" labels_batch = self.processor.pad(\n",
|
264 |
+
" label_features,\n",
|
265 |
+
" padding=self.padding,\n",
|
266 |
+
" max_length=self.max_length_labels,\n",
|
267 |
+
" pad_to_multiple_of=self.pad_to_multiple_of_labels,\n",
|
268 |
+
" return_tensors=\"pt\",\n",
|
269 |
+
" )\n",
|
270 |
+
"\n",
|
271 |
+
" # replace padding with -100 to ignore loss correctly\n",
|
272 |
+
" labels = labels_batch[\"input_ids\"].masked_fill(labels_batch.attention_mask.ne(1), -100)\n",
|
273 |
+
"\n",
|
274 |
+
" batch[\"labels\"] = labels\n",
|
275 |
+
"\n",
|
276 |
+
" return batch"
|
277 |
+
]
|
278 |
+
},
|
279 |
+
{
|
280 |
+
"cell_type": "code",
|
281 |
+
"execution_count": null,
|
282 |
+
"id": "6519ec7b-dc55-4c37-90f7-2822c40e3e52",
|
283 |
+
"metadata": {},
|
284 |
+
"outputs": [],
|
285 |
+
"source": [
|
286 |
+
"data_collator = DataCollatorCTCWithPadding(processor=processor, padding=True)"
|
287 |
+
]
|
288 |
+
},
|
289 |
+
{
|
290 |
+
"cell_type": "code",
|
291 |
+
"execution_count": null,
|
292 |
+
"id": "f05bd4f0-cb15-4729-a8dd-610baaee6c8f",
|
293 |
+
"metadata": {},
|
294 |
+
"outputs": [],
|
295 |
+
"source": [
|
296 |
+
"import evaluate \n",
|
297 |
+
"\n",
|
298 |
+
"\n",
|
299 |
+
"wer_metric = evaluate.load(\"wer\")\n",
|
300 |
+
"cer_metric = evaluate.load(\"cer\")"
|
301 |
+
]
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"cell_type": "code",
|
305 |
+
"execution_count": null,
|
306 |
+
"id": "b75cbad2-2487-4cd2-b20d-98dbc5631fa6",
|
307 |
+
"metadata": {},
|
308 |
+
"outputs": [],
|
309 |
+
"source": [
|
310 |
+
"def compute_metrics(pred):\n",
|
311 |
+
" pred_logits = pred.predictions\n",
|
312 |
+
" pred_ids = np.argmax(pred_logits, axis=-1)\n",
|
313 |
+
"\n",
|
314 |
+
" pred.label_ids[pred.label_ids == -100] = processor.tokenizer.pad_token_id\n",
|
315 |
+
"\n",
|
316 |
+
" pred_str = processor.batch_decode(pred_ids)\n",
|
317 |
+
" # we do not want to group tokens when computing the metrics\n",
|
318 |
+
" label_str = processor.batch_decode(pred.label_ids, group_tokens=False)\n",
|
319 |
+
"\n",
|
320 |
+
" wer = wer_metric.compute(predictions=pred_str, references=label_str)\n",
|
321 |
+
"\n",
|
322 |
+
" return {\"wer\": wer}"
|
323 |
+
]
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"cell_type": "code",
|
327 |
+
"execution_count": null,
|
328 |
+
"id": "81cd6a27-032b-46e9-9465-9f12efe0ea0e",
|
329 |
+
"metadata": {},
|
330 |
+
"outputs": [],
|
331 |
+
"source": [
|
332 |
+
"from transformers import Wav2Vec2ForCTC\n",
|
333 |
+
"\n",
|
334 |
+
"\n",
|
335 |
+
"model = Wav2Vec2ForCTC.from_pretrained(\n",
|
336 |
+
" model_repo_name, \n",
|
337 |
+
" ctc_loss_reduction=\"mean\", \n",
|
338 |
+
" pad_token_id=processor.tokenizer.pad_token_id,\n",
|
339 |
+
")"
|
340 |
+
]
|
341 |
+
},
|
342 |
+
{
|
343 |
+
"cell_type": "code",
|
344 |
+
"execution_count": null,
|
345 |
+
"id": "f3a57e26-451e-4eb3-9b5e-0ba789895ff5",
|
346 |
+
"metadata": {},
|
347 |
+
"outputs": [],
|
348 |
+
"source": [
|
349 |
+
"model.freeze_feature_extractor()"
|
350 |
+
]
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"cell_type": "code",
|
354 |
+
"execution_count": null,
|
355 |
+
"id": "adb7eaaa-e18d-4716-af7a-0c5fdc24a95c",
|
356 |
+
"metadata": {},
|
357 |
+
"outputs": [],
|
358 |
+
"source": [
|
359 |
+
"from transformers import TrainingArguments\n",
|
360 |
+
"\n",
|
361 |
+
"dir_for_training_artifacts = \"training-artifacts-\" + model_repo_name\n",
|
362 |
+
"\n",
|
363 |
+
"\n",
|
364 |
+
"training_args = TrainingArguments(\n",
|
365 |
+
" eval_steps=50,\n",
|
366 |
+
" evaluation_strategy=\"steps\",\n",
|
367 |
+
" fp16=True,\n",
|
368 |
+
" gradient_checkpointing=True,\n",
|
369 |
+
" group_by_length=True,\n",
|
370 |
+
" learning_rate=1e-4,\n",
|
371 |
+
" logging_steps=50,\n",
|
372 |
+
" num_train_epochs=128,\n",
|
373 |
+
" output_dir=dir_for_training_artifacts,\n",
|
374 |
+
" per_device_train_batch_size=64,\n",
|
375 |
+
" save_steps=50,\n",
|
376 |
+
" save_total_limit=2,\n",
|
377 |
+
" warmup_steps=15,\n",
|
378 |
+
" weight_decay=0.01,\n",
|
379 |
+
")"
|
380 |
+
]
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"cell_type": "code",
|
384 |
+
"execution_count": null,
|
385 |
+
"id": "1f6db0db-6ce1-4a59-bf49-d8f776fa3a67",
|
386 |
+
"metadata": {},
|
387 |
+
"outputs": [],
|
388 |
+
"source": [
|
389 |
+
"from transformers import Trainer\n",
|
390 |
+
"\n",
|
391 |
+
"trainer = Trainer(\n",
|
392 |
+
" model=model,\n",
|
393 |
+
" data_collator=data_collator,\n",
|
394 |
+
" args=training_args,\n",
|
395 |
+
" compute_metrics=compute_metrics,\n",
|
396 |
+
" train_dataset=acc_dataset[\"train\"],\n",
|
397 |
+
" eval_dataset=acc_dataset[\"validate\"],\n",
|
398 |
+
" tokenizer=processor.feature_extractor,\n",
|
399 |
+
")\n"
|
400 |
+
]
|
401 |
+
},
|
402 |
+
{
|
403 |
+
"cell_type": "code",
|
404 |
+
"execution_count": null,
|
405 |
+
"id": "08212258-db86-44d6-b4f3-9fb936ceee85",
|
406 |
+
"metadata": {},
|
407 |
+
"outputs": [],
|
408 |
+
"source": [
|
409 |
+
"# Authenticate with HF if you haven't already. \n",
|
410 |
+
"\n",
|
411 |
+
"#from huggingface_hub import notebook_login\n",
|
412 |
+
"\n",
|
413 |
+
"#notebook_login()"
|
414 |
+
]
|
415 |
+
},
|
416 |
+
{
|
417 |
+
"cell_type": "code",
|
418 |
+
"execution_count": null,
|
419 |
+
"id": "0940c20f-6d2f-4643-8aa4-ecd2e74f29ab",
|
420 |
+
"metadata": {},
|
421 |
+
"outputs": [],
|
422 |
+
"source": [
|
423 |
+
"trainer.train()"
|
424 |
+
]
|
425 |
+
},
|
426 |
+
{
|
427 |
+
"cell_type": "code",
|
428 |
+
"execution_count": null,
|
429 |
+
"id": "0434e129-05c5-469b-8e2c-1b16bdfd2432",
|
430 |
+
"metadata": {},
|
431 |
+
"outputs": [],
|
432 |
+
"source": [
|
433 |
+
"trainer.push_to_hub()"
|
434 |
+
]
|
435 |
+
},
|
436 |
+
{
|
437 |
+
"cell_type": "code",
|
438 |
+
"execution_count": null,
|
439 |
+
"id": "4d4f0605-9b4a-46d3-912c-cda97d3a6b9e",
|
440 |
+
"metadata": {},
|
441 |
+
"outputs": [],
|
442 |
+
"source": [
|
443 |
+
"def map_to_result(batch):\n",
|
444 |
+
" with torch.no_grad():\n",
|
445 |
+
" input_values = torch.tensor(batch[\"input_values\"], device=\"cuda\").unsqueeze(0)\n",
|
446 |
+
" logits = model(input_values).logits\n",
|
447 |
+
"\n",
|
448 |
+
" pred_ids = torch.argmax(logits, dim=-1)\n",
|
449 |
+
" batch[\"pred_str\"] = processor.batch_decode(pred_ids)[0]\n",
|
450 |
+
" batch[\"text\"] = processor.decode(batch[\"labels\"], group_tokens=False)\n",
|
451 |
+
" \n",
|
452 |
+
" return batch"
|
453 |
+
]
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"cell_type": "code",
|
457 |
+
"execution_count": null,
|
458 |
+
"id": "907d2b0c-23c1-4862-900c-a020d7d8b8c0",
|
459 |
+
"metadata": {},
|
460 |
+
"outputs": [],
|
461 |
+
"source": [
|
462 |
+
"results = acc_dataset[\"test\"].map(map_to_result)\n",
|
463 |
+
"#results = acc_dataset[\"validate\"].map(map_to_result)\n",
|
464 |
+
"#results = acc_dataset[\"train\"].map(map_to_result)"
|
465 |
+
]
|
466 |
+
},
|
467 |
+
{
|
468 |
+
"cell_type": "code",
|
469 |
+
"execution_count": null,
|
470 |
+
"id": "bb25801b-adb7-48e0-9849-473dec2ee765",
|
471 |
+
"metadata": {},
|
472 |
+
"outputs": [],
|
473 |
+
"source": [
|
474 |
+
"import evaluate \n",
|
475 |
+
"\n",
|
476 |
+
"\n",
|
477 |
+
"wer_metric = evaluate.load(\"wer\")\n",
|
478 |
+
"cer_metric = evaluate.load(\"cer\")"
|
479 |
+
]
|
480 |
+
},
|
481 |
+
{
|
482 |
+
"cell_type": "code",
|
483 |
+
"execution_count": null,
|
484 |
+
"id": "d3c3da77-c625-45fc-be34-ec43e2dbd6c2",
|
485 |
+
"metadata": {},
|
486 |
+
"outputs": [],
|
487 |
+
"source": [
|
488 |
+
"print(\"WER: {:.3f}\".format(wer_metric.compute(predictions=results[\"pred_str\"], references=results[\"text\"])))\n",
|
489 |
+
"print(\"CER: {:.3f}\".format(cer_metric.compute(predictions=results[\"pred_str\"], references=results[\"text\"])))"
|
490 |
+
]
|
491 |
+
},
|
492 |
+
{
|
493 |
+
"cell_type": "code",
|
494 |
+
"execution_count": null,
|
495 |
+
"id": "ce444b9a-c222-4c01-a237-32b255a4617d",
|
496 |
+
"metadata": {},
|
497 |
+
"outputs": [],
|
498 |
+
"source": [
|
499 |
+
"def show_random_elements(dataset, num_examples=10):\n",
|
500 |
+
" assert num_examples <= len(dataset), \"Can't pick more elements than there are in the dataset.\"\n",
|
501 |
+
" picks = []\n",
|
502 |
+
" for _ in range(num_examples):\n",
|
503 |
+
" pick = random.randint(0, len(dataset)-1)\n",
|
504 |
+
" while pick in picks:\n",
|
505 |
+
" pick = random.randint(0, len(dataset)-1)\n",
|
506 |
+
" picks.append(pick)\n",
|
507 |
+
" \n",
|
508 |
+
" df = pd.DataFrame(dataset[picks])\n",
|
509 |
+
" display(HTML(df.to_html()))"
|
510 |
+
]
|
511 |
+
},
|
512 |
+
{
|
513 |
+
"cell_type": "code",
|
514 |
+
"execution_count": null,
|
515 |
+
"id": "3b5f15fa-8099-49fd-9f30-75db02fae4e1",
|
516 |
+
"metadata": {},
|
517 |
+
"outputs": [],
|
518 |
+
"source": [
|
519 |
+
"show_random_elements(results.select_columns([\"pred_str\", \"text\"]))"
|
520 |
+
]
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"cell_type": "code",
|
524 |
+
"execution_count": null,
|
525 |
+
"id": "b4d29c7b-9610-4fc5-a30d-9ebffb41dd1d",
|
526 |
+
"metadata": {},
|
527 |
+
"outputs": [],
|
528 |
+
"source": [
|
529 |
+
"with torch.no_grad():\n",
|
530 |
+
" logits = model(torch.tensor(acc_dataset[\"test\"][:1][\"input_values\"], device=\"cuda\")).logits\n",
|
531 |
+
"\n",
|
532 |
+
"pred_ids = torch.argmax(logits, dim=-1)\n",
|
533 |
+
"\n",
|
534 |
+
"# convert ids to tokens\n",
|
535 |
+
"\" \".join(processor.tokenizer.convert_ids_to_tokens(pred_ids[0].tolist()))"
|
536 |
+
]
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"cell_type": "code",
|
540 |
+
"execution_count": null,
|
541 |
+
"id": "d7bbd7a4-3c1c-4950-a44c-08800de24667",
|
542 |
+
"metadata": {},
|
543 |
+
"outputs": [],
|
544 |
+
"source": [
|
545 |
+
"results.select_columns([\"pred_str\", \"text\"])"
|
546 |
+
]
|
547 |
+
}
|
548 |
+
],
|
549 |
+
"metadata": {
|
550 |
+
"kernelspec": {
|
551 |
+
"display_name": "Python 3 (ipykernel)",
|
552 |
+
"language": "python",
|
553 |
+
"name": "python3"
|
554 |
+
},
|
555 |
+
"language_info": {
|
556 |
+
"codemirror_mode": {
|
557 |
+
"name": "ipython",
|
558 |
+
"version": 3
|
559 |
+
},
|
560 |
+
"file_extension": ".py",
|
561 |
+
"mimetype": "text/x-python",
|
562 |
+
"name": "python",
|
563 |
+
"nbconvert_exporter": "python",
|
564 |
+
"pygments_lexer": "ipython3",
|
565 |
+
"version": "3.10.12"
|
566 |
+
}
|
567 |
+
},
|
568 |
+
"nbformat": 4,
|
569 |
+
"nbformat_minor": 5
|
570 |
+
}
|