File size: 2,401 Bytes
1bd775d ec6f2e9 933a0eb 1bd775d 933a0eb 1bd775d fa10c2d 1bd775d fa10c2d 1bd775d fa10c2d 0d3d7f9 1bd775d 933a0eb fa10c2d 933a0eb fa10c2d 23a37c4 933a0eb fa10c2d 23a37c4 933a0eb 1bd775d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
---
tags:
- generated_from_trainer
language: ar
datasets:
- LABR
widget:
- text: "كان الكاتب ممكن"
- text: "كتاب ممتاز ولكن"
- text: "رواية درامية جدا والافكار بسيطة"
model-index:
- name: argpt2-goodreads
results: []
---
# argpt2-goodreads
This model is a fine-tuned version of [gpt2-medium](https://huggingface.co/gpt2-medium) on an goodreads LABR dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4389
## Model description
Generate sentences either positive/negative examples based on goodreads corpus in arabic language.
## Intended uses & limitations
the model fine-tuned on arabic language only with aspect to generate sentences such as reviews in order todo the same for other languages you need to fine-tune it in your own.
any harmful content generated by GPT2 should not be used in anywhere.
## Training and evaluation data
training and validation done on goodreads dataset LABR 80% for trainng and 20% for testing
## Usage
```
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("mofawzy/argpt2-goodreads")
model = AutoModelForCausalLM.from_pretrained("mofawzy/argpt2-goodreads")
```
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: tpu
- num_devices: 8
- total_train_batch_size: 128
- total_eval_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20.0
### Training results
- train_loss = 1.474
### Evaluation results
- eval_loss = 1.4389
### train metrics
- epoch = 20.0
- train_loss = 1.474
- train_runtime = 2:18:14.51
- train_samples = 108110
- train_samples_per_second = 260.678
- train_steps_per_second = 2.037
### eval metrics
- epoch = 20.0
- eval_loss = 1.4389
- eval_runtime = 0:04:37.01
- eval_samples = 27329
- eval_samples_per_second = 98.655
- eval_steps_per_second = 0.773
- perplexity = 4.2162
### Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.10.0+cu102
- Datasets 1.16.1
- Tokenizers 0.10.3
|