Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- ar
|
4 |
+
|
5 |
+
datasets:
|
6 |
+
- ASTD
|
7 |
+
|
8 |
+
tags:
|
9 |
+
- labr
|
10 |
+
|
11 |
+
widget:
|
12 |
+
- text: "العنف والقتل في محيط العالم في زياده يوميا"
|
13 |
+
- text: "الصداقه تزرع الحياه ازهارا"
|
14 |
+
|
15 |
+
---
|
16 |
+
|
17 |
+
# BERT-LABR unbalanced
|
18 |
+
Arabic version bert model fine tuned on ASTD dataset balanced version to identify twitter sentiments in Arabic language MSA dialect .
|
19 |
+
|
20 |
+
## Data
|
21 |
+
The model were fine-tuned on ~63000 book reviews in arabic using bert large arabic
|
22 |
+
|
23 |
+
|
24 |
+
## Results
|
25 |
+
| class | precision | recall | f1-score | Support |
|
26 |
+
|----------|-----------|--------|----------|---------|
|
27 |
+
| 0 | 0.9328 | 0.9398 | 0.9363 | 133 |
|
28 |
+
| 1 | 0.9394 | 0.9323 | 0.9358 | 133 |
|
29 |
+
| Accuracy | | | 0.9361 | 266 |
|
30 |
+
|
31 |
+
|
32 |
+
|
33 |
+
|
34 |
+
|
35 |
+
## How to use
|
36 |
+
|
37 |
+
You can use these models by installing `torch` or `tensorflow` and Huggingface library `transformers`. And you can use it directly by initializing it like this:
|
38 |
+
|
39 |
+
```python
|
40 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
41 |
+
|
42 |
+
model_name="mofawzy/BERT-ASTD"
|
43 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name,num_labels=2)
|
44 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
45 |
+
|
46 |
+
```
|