--- language: - en license: apache-2.0 tags: - en-asr-leaderboard - generated_from_trainer datasets: - mn367/radio-test-dataset model-index: - name: Whisper Medium 1hr results: [] --- # Whisper Medium 1hr This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Radio dataset dataset. It achieves the following results on the evaluation set: - eval_loss: 0.6053 - eval_wer: 17.5426 - eval_runtime: 651.6941 - eval_samples_per_second: 2.363 - eval_steps_per_second: 0.296 - epoch: 37.5 - step: 900 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 1600 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2