--- base_model: epfl-llm/meditron-7b datasets: - epfl-llm/guidelines language: - en license: llama2 metrics: - accuracy - perplexity tags: - mlx --- # mlx-community/meditron-7b The Model [mlx-community/meditron-7b](https://huggingface.co/mlx-community/meditron-7b) was converted to MLX format from [epfl-llm/meditron-7b](https://huggingface.co/epfl-llm/meditron-7b) using mlx-lm version **0.20.1**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/meditron-7b") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```