File size: 1,286 Bytes
3cd7c56 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
---
library_name: transformers
tags:
- Uncensored
- Abliterated
- Cubed Reasoning
- QwQ-32B
- reasoning
- thinking
- r1
- cot
- deepseek
- Qwen2.5
- Hermes
- DeepHermes
- DeepSeek
- DeepSeek-R1-Distill
- 128k context
- merge
- mlx
- mlx-my-repo
base_model: DavidAU/Qwen2.5-QwQ-35B-Eureka-Cubed-abliterated-uncensored
---
# bobig/Qwen2.5-QwQ-35B-Eureka-Cubed-abliterated-uncensored-4bit
The Model [bobig/Qwen2.5-QwQ-35B-Eureka-Cubed-abliterated-uncensored-4bit](https://huggingface.co/bobig/Qwen2.5-QwQ-35B-Eureka-Cubed-abliterated-uncensored-4bit) was converted to MLX format from [DavidAU/Qwen2.5-QwQ-35B-Eureka-Cubed-abliterated-uncensored](https://huggingface.co/DavidAU/Qwen2.5-QwQ-35B-Eureka-Cubed-abliterated-uncensored) using mlx-lm version **0.21.5**.
## Use with mlx
```bash
pip install mlx-lm
```
```python
from mlx_lm import load, generate
model, tokenizer = load("bobig/Qwen2.5-QwQ-35B-Eureka-Cubed-abliterated-uncensored-4bit")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
```
|