Add files using upload-large-folder tool
Browse files- README.md +40 -0
- config.json +172 -0
- configuration_hunyuan.py +243 -0
- hy.tiktoken +0 -0
- model.safetensors +3 -0
- model.safetensors.index.json +811 -0
- modeling_hunyuan.py +0 -0
- special_tokens_map.json +9 -0
- tokenization_hy.py +296 -0
- tokenizer_config.json +21 -0
README.md
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
pipeline_tag: text-generation
|
| 5 |
+
library_name: transformers
|
| 6 |
+
license: other
|
| 7 |
+
license_name: tencent-license
|
| 8 |
+
license_link: https://huggingface.co/tencent/Hunyuan-7B-Instruct/blob/main/LICENSE.txt
|
| 9 |
+
base_model: tencent/Hunyuan-7B-Instruct
|
| 10 |
+
tags:
|
| 11 |
+
- mlx
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
# mlx-community/Hunyuan-7B-Instruct-3bit
|
| 15 |
+
|
| 16 |
+
The Model [mlx-community/Hunyuan-7B-Instruct-3bit](https://huggingface.co/mlx-community/Hunyuan-7B-Instruct-3bit) was
|
| 17 |
+
converted to MLX format from [tencent/Hunyuan-7B-Instruct](https://huggingface.co/tencent/Hunyuan-7B-Instruct)
|
| 18 |
+
using mlx-lm version **0.21.0**.
|
| 19 |
+
|
| 20 |
+
## Use with mlx
|
| 21 |
+
|
| 22 |
+
```bash
|
| 23 |
+
pip install mlx-lm
|
| 24 |
+
```
|
| 25 |
+
|
| 26 |
+
```python
|
| 27 |
+
from mlx_lm import load, generate
|
| 28 |
+
|
| 29 |
+
model, tokenizer = load("mlx-community/Hunyuan-7B-Instruct-3bit")
|
| 30 |
+
|
| 31 |
+
prompt = "hello"
|
| 32 |
+
|
| 33 |
+
if tokenizer.chat_template is not None:
|
| 34 |
+
messages = [{"role": "user", "content": prompt}]
|
| 35 |
+
prompt = tokenizer.apply_chat_template(
|
| 36 |
+
messages, add_generation_prompt=True
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
response = generate(model, tokenizer, prompt=prompt, verbose=True)
|
| 40 |
+
```
|
config.json
ADDED
|
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"HunYuanForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"attention_bias": false,
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"attention_head_dim": 128,
|
| 8 |
+
"auto_map": {
|
| 9 |
+
"AutoConfig": "configuration_hunyuan.HunYuanConfig",
|
| 10 |
+
"AutoModel": "modeling_hunyuan.HunyuanModel",
|
| 11 |
+
"AutoModelForCausalLM": "modeling_hunyuan.HunYuanForCausalLM"
|
| 12 |
+
},
|
| 13 |
+
"bos_token_id": 1,
|
| 14 |
+
"cla_share_factor": 2,
|
| 15 |
+
"eos_token_id": 2,
|
| 16 |
+
"group_limited_greedy": false,
|
| 17 |
+
"hidden_act": "silu",
|
| 18 |
+
"hidden_size": 4096,
|
| 19 |
+
"initializer_range": 0.02,
|
| 20 |
+
"intermediate_size": 14336,
|
| 21 |
+
"kv_lora_rank": null,
|
| 22 |
+
"max_position_embeddings": 4096,
|
| 23 |
+
"mlp_bias": false,
|
| 24 |
+
"model_type": "hunyuan",
|
| 25 |
+
"moe_drop_tokens": false,
|
| 26 |
+
"moe_intermediate_size": [
|
| 27 |
+
14336,
|
| 28 |
+
14336,
|
| 29 |
+
14336,
|
| 30 |
+
14336,
|
| 31 |
+
14336,
|
| 32 |
+
14336,
|
| 33 |
+
14336,
|
| 34 |
+
14336,
|
| 35 |
+
14336,
|
| 36 |
+
14336,
|
| 37 |
+
14336,
|
| 38 |
+
14336,
|
| 39 |
+
14336,
|
| 40 |
+
14336,
|
| 41 |
+
14336,
|
| 42 |
+
14336,
|
| 43 |
+
14336,
|
| 44 |
+
14336,
|
| 45 |
+
14336,
|
| 46 |
+
14336,
|
| 47 |
+
14336,
|
| 48 |
+
14336,
|
| 49 |
+
14336,
|
| 50 |
+
14336,
|
| 51 |
+
14336,
|
| 52 |
+
14336,
|
| 53 |
+
14336,
|
| 54 |
+
14336,
|
| 55 |
+
14336,
|
| 56 |
+
14336,
|
| 57 |
+
14336,
|
| 58 |
+
14336
|
| 59 |
+
],
|
| 60 |
+
"moe_layer_num_skipped": 0,
|
| 61 |
+
"moe_random_routing_dropped_token": false,
|
| 62 |
+
"moe_topk": [
|
| 63 |
+
1,
|
| 64 |
+
1,
|
| 65 |
+
1,
|
| 66 |
+
1,
|
| 67 |
+
1,
|
| 68 |
+
1,
|
| 69 |
+
1,
|
| 70 |
+
1,
|
| 71 |
+
1,
|
| 72 |
+
1,
|
| 73 |
+
1,
|
| 74 |
+
1,
|
| 75 |
+
1,
|
| 76 |
+
1,
|
| 77 |
+
1,
|
| 78 |
+
1,
|
| 79 |
+
1,
|
| 80 |
+
1,
|
| 81 |
+
1,
|
| 82 |
+
1,
|
| 83 |
+
1,
|
| 84 |
+
1,
|
| 85 |
+
1,
|
| 86 |
+
1,
|
| 87 |
+
1,
|
| 88 |
+
1,
|
| 89 |
+
1,
|
| 90 |
+
1,
|
| 91 |
+
1,
|
| 92 |
+
1,
|
| 93 |
+
1,
|
| 94 |
+
1
|
| 95 |
+
],
|
| 96 |
+
"n_group": false,
|
| 97 |
+
"norm_topk_prob": false,
|
| 98 |
+
"num_attention_heads": 32,
|
| 99 |
+
"num_experts": 1,
|
| 100 |
+
"num_hidden_layers": 32,
|
| 101 |
+
"num_key_value_heads": 8,
|
| 102 |
+
"num_shared_expert": [
|
| 103 |
+
1,
|
| 104 |
+
1,
|
| 105 |
+
1,
|
| 106 |
+
1,
|
| 107 |
+
1,
|
| 108 |
+
1,
|
| 109 |
+
1,
|
| 110 |
+
1,
|
| 111 |
+
1,
|
| 112 |
+
1,
|
| 113 |
+
1,
|
| 114 |
+
1,
|
| 115 |
+
1,
|
| 116 |
+
1,
|
| 117 |
+
1,
|
| 118 |
+
1,
|
| 119 |
+
1,
|
| 120 |
+
1,
|
| 121 |
+
1,
|
| 122 |
+
1,
|
| 123 |
+
1,
|
| 124 |
+
1,
|
| 125 |
+
1,
|
| 126 |
+
1,
|
| 127 |
+
1,
|
| 128 |
+
1,
|
| 129 |
+
1,
|
| 130 |
+
1,
|
| 131 |
+
1,
|
| 132 |
+
1,
|
| 133 |
+
1,
|
| 134 |
+
1
|
| 135 |
+
],
|
| 136 |
+
"pad_token_id": 0,
|
| 137 |
+
"pretraining_tp": 1,
|
| 138 |
+
"q_lora_rank": null,
|
| 139 |
+
"qk_nope_head_dim": null,
|
| 140 |
+
"qk_rope_head_dim": null,
|
| 141 |
+
"quantization": {
|
| 142 |
+
"group_size": 64,
|
| 143 |
+
"bits": 3
|
| 144 |
+
},
|
| 145 |
+
"quantization_config": {
|
| 146 |
+
"group_size": 64,
|
| 147 |
+
"bits": 3
|
| 148 |
+
},
|
| 149 |
+
"rms_norm_eps": 1e-05,
|
| 150 |
+
"rope_scaling": {
|
| 151 |
+
"alpha": 1000.0,
|
| 152 |
+
"beta_fast": 32,
|
| 153 |
+
"beta_slow": 1,
|
| 154 |
+
"factor": 1.0,
|
| 155 |
+
"mscale": 1.0,
|
| 156 |
+
"mscale_all_dim": 1.0,
|
| 157 |
+
"type": "dynamic"
|
| 158 |
+
},
|
| 159 |
+
"rope_theta": 10000.0,
|
| 160 |
+
"routed_scaling_factor": false,
|
| 161 |
+
"tie_word_embeddings": true,
|
| 162 |
+
"topk_group": false,
|
| 163 |
+
"torch_dtype": "bfloat16",
|
| 164 |
+
"transformers_version": "4.41.2",
|
| 165 |
+
"use_cache": true,
|
| 166 |
+
"use_cla": false,
|
| 167 |
+
"use_mixed_mlp_moe": false,
|
| 168 |
+
"use_mla": false,
|
| 169 |
+
"use_qk_norm": true,
|
| 170 |
+
"v_head_dim": null,
|
| 171 |
+
"vocab_size": 129024
|
| 172 |
+
}
|
configuration_hunyuan.py
ADDED
|
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved.
|
| 3 |
+
""" HunYuan model configuration"""
|
| 4 |
+
|
| 5 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 6 |
+
from transformers.utils import logging
|
| 7 |
+
from typing import List, Union, Optional
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
logger = logging.get_logger(__name__)
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class HunYuanConfig(PretrainedConfig):
|
| 14 |
+
r"""
|
| 15 |
+
This is the configuration class to store the configuration of a [`HunYuanModel`]. It is used to instantiate an
|
| 16 |
+
HunYuan model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
| 17 |
+
with the defaults will yield a similar configuration to that of the HunYuan-7B.
|
| 18 |
+
|
| 19 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 20 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
Args:
|
| 24 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
| 25 |
+
Vocabulary size of the HunYuan model. Defines the number of different tokens that can be represented by the
|
| 26 |
+
`inputs_ids` passed when calling [`HunYuanModel`]
|
| 27 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
| 28 |
+
Dimension of the hidden representations.
|
| 29 |
+
intermediate_size (`int`, *optional*, defaults to 11008):
|
| 30 |
+
Dimension of the MLP representations or shared MLP representations.
|
| 31 |
+
moe_intermediate_size (`int` or `List`, *optional*, defaults to 11008):
|
| 32 |
+
Dimension of the MLP representations in MoE. Use a list if you want a different size per layer.
|
| 33 |
+
num_hidden_layers (`int`, *optional*, defaults to 32):
|
| 34 |
+
Number of hidden layers in the Transformer decoder.
|
| 35 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
| 36 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
| 37 |
+
num_key_value_heads (`int`, *optional*):
|
| 38 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
| 39 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
| 40 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
| 41 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
| 42 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
| 43 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
| 44 |
+
`num_attention_heads`.
|
| 45 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
| 46 |
+
The non-linear activation function (function or string) in the decoder.
|
| 47 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
| 48 |
+
The maximum sequence length that this model might ever be used with.
|
| 49 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 50 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 51 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
| 52 |
+
The epsilon used by the rms normalization layers.
|
| 53 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
| 54 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
| 55 |
+
relevant if `config.is_decoder=True`.
|
| 56 |
+
pad_token_id (`int`, *optional*):
|
| 57 |
+
Padding token id.
|
| 58 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
| 59 |
+
Beginning of stream token id.
|
| 60 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
| 61 |
+
End of stream token id.
|
| 62 |
+
pretraining_tp (`int`, *optional*, defaults to 1):
|
| 63 |
+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
| 64 |
+
document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is
|
| 65 |
+
necessary to ensure exact reproducibility of the pretraining results. Please refer to [this
|
| 66 |
+
issue](https://github.com/pytorch/pytorch/issues/76232).
|
| 67 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
| 68 |
+
Whether to tie weight embeddings
|
| 69 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
| 70 |
+
The base period of the RoPE embeddings.
|
| 71 |
+
rope_scaling (`Dict`, *optional*):
|
| 72 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
| 73 |
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
| 74 |
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
| 75 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
| 76 |
+
these scaling strategies behave:
|
| 77 |
+
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
| 78 |
+
experimental feature, subject to breaking API changes in future versions.
|
| 79 |
+
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
| 80 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
| 81 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 82 |
+
The dropout ratio for the attention probabilities.
|
| 83 |
+
use_qk_norm (`bool`, *optional*, defaults to `False`):
|
| 84 |
+
Whether query and key in attention use norm
|
| 85 |
+
use_cla (`bool`, *optional*, defaults to `False`):
|
| 86 |
+
Whether to use CLA in attention
|
| 87 |
+
cla_share_factor (`int`, *optional*, defaults to 1):
|
| 88 |
+
The share factor of CLA
|
| 89 |
+
num_experts (`int` or `List`, *optional*, defaults to 1):
|
| 90 |
+
The number of experts for moe. If it is a list, it will be used as the number of experts for each layer.
|
| 91 |
+
num_shared_expert (`int` or `List`, *optional*, defaults to 1):
|
| 92 |
+
The number of shared experts for moe. If it is a list, it will be used as the number of shared experts for each layer.
|
| 93 |
+
moe_topk (`int` or `List`, *optional*, defaults to 1):
|
| 94 |
+
The topk value for moe. If it is a list, it will be used as the topk value for each layer.
|
| 95 |
+
capacity_factor (Not used) (`float` or `List`, *optional*, defaults to 1.0):
|
| 96 |
+
The capacity factor for moe. If it is a list, it will be used as the capacity factor for each layer.
|
| 97 |
+
moe_layer_num_skipped (`int`, *optional*, defaults to 0):
|
| 98 |
+
First moe_layer_num_skipped layers do not use MoE.
|
| 99 |
+
"""
|
| 100 |
+
|
| 101 |
+
model_type = "hunyuan"
|
| 102 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 103 |
+
|
| 104 |
+
def __init__(
|
| 105 |
+
self,
|
| 106 |
+
vocab_size=290943,
|
| 107 |
+
hidden_size=4096,
|
| 108 |
+
intermediate_size: int=11008,
|
| 109 |
+
moe_intermediate_size: Union[int, List]=None,
|
| 110 |
+
num_hidden_layers=32,
|
| 111 |
+
num_attention_heads=32,
|
| 112 |
+
num_key_value_heads=None,
|
| 113 |
+
attention_head_dim=None,
|
| 114 |
+
hidden_act="silu",
|
| 115 |
+
max_position_embeddings=2048,
|
| 116 |
+
initializer_range=0.02,
|
| 117 |
+
rms_norm_eps=1e-5,
|
| 118 |
+
use_cache=True,
|
| 119 |
+
pad_token_id=0,
|
| 120 |
+
bos_token_id=1,
|
| 121 |
+
eos_token_id=2,
|
| 122 |
+
pretraining_tp=1,
|
| 123 |
+
tie_word_embeddings=False,
|
| 124 |
+
rope_theta=10000.0,
|
| 125 |
+
rope_scaling=None,
|
| 126 |
+
attention_bias=False,
|
| 127 |
+
mlp_bias=False,
|
| 128 |
+
attention_dropout=0.0,
|
| 129 |
+
use_qk_norm=False,
|
| 130 |
+
use_cla=False,
|
| 131 |
+
cla_share_factor=1,
|
| 132 |
+
num_experts: Union[int, List]=1,
|
| 133 |
+
use_mixed_mlp_moe=False,
|
| 134 |
+
num_shared_expert: Union[int, List]=1,
|
| 135 |
+
moe_topk: Union[int, List]=1,
|
| 136 |
+
# capacity_factor: Union[int, List]=1.0,
|
| 137 |
+
moe_drop_tokens=False,
|
| 138 |
+
moe_random_routing_dropped_token=False,
|
| 139 |
+
use_mla=False,
|
| 140 |
+
kv_lora_rank=512,
|
| 141 |
+
q_lora_rank=1536,
|
| 142 |
+
qk_rope_head_dim=64,
|
| 143 |
+
v_head_dim=128,
|
| 144 |
+
qk_nope_head_dim=128,
|
| 145 |
+
moe_layer_num_skipped=0,
|
| 146 |
+
norm_topk_prob=False,
|
| 147 |
+
routed_scaling_factor=1.0,
|
| 148 |
+
group_limited_greedy=False,
|
| 149 |
+
n_group=None,
|
| 150 |
+
topk_group=None,
|
| 151 |
+
**kwargs,
|
| 152 |
+
):
|
| 153 |
+
self.vocab_size = vocab_size
|
| 154 |
+
self.max_position_embeddings = max_position_embeddings
|
| 155 |
+
self.hidden_size = hidden_size
|
| 156 |
+
self.intermediate_size = intermediate_size
|
| 157 |
+
self.moe_intermediate_size = moe_intermediate_size
|
| 158 |
+
self.num_hidden_layers = num_hidden_layers
|
| 159 |
+
self.num_attention_heads = num_attention_heads
|
| 160 |
+
self.num_experts = num_experts
|
| 161 |
+
self.use_mixed_mlp_moe = use_mixed_mlp_moe
|
| 162 |
+
self.num_shared_expert = num_shared_expert
|
| 163 |
+
self.moe_topk = moe_topk
|
| 164 |
+
# self.capacity_factor = capacity_factor
|
| 165 |
+
self.moe_drop_tokens = moe_drop_tokens
|
| 166 |
+
self.moe_random_routing_dropped_token = moe_random_routing_dropped_token
|
| 167 |
+
|
| 168 |
+
if attention_head_dim is not None:
|
| 169 |
+
self.attention_head_dim = attention_head_dim
|
| 170 |
+
else:
|
| 171 |
+
self.attention_head_dim = self.hidden_size // num_attention_heads
|
| 172 |
+
|
| 173 |
+
# for backward compatibility
|
| 174 |
+
if num_key_value_heads is None:
|
| 175 |
+
num_key_value_heads = num_attention_heads
|
| 176 |
+
|
| 177 |
+
self.num_key_value_heads = num_key_value_heads
|
| 178 |
+
self.hidden_act = hidden_act
|
| 179 |
+
self.initializer_range = initializer_range
|
| 180 |
+
self.rms_norm_eps = rms_norm_eps
|
| 181 |
+
self.pretraining_tp = pretraining_tp
|
| 182 |
+
self.use_cache = use_cache
|
| 183 |
+
self.rope_theta = rope_theta
|
| 184 |
+
self.rope_scaling = rope_scaling
|
| 185 |
+
# self._rope_scaling_validation() # TODO: Need validation?
|
| 186 |
+
self.attention_bias = attention_bias
|
| 187 |
+
self.mlp_bias = mlp_bias
|
| 188 |
+
self.attention_dropout = attention_dropout
|
| 189 |
+
self.use_qk_norm = use_qk_norm
|
| 190 |
+
self.use_cla = use_cla
|
| 191 |
+
self.cla_share_factor = cla_share_factor
|
| 192 |
+
|
| 193 |
+
# MLA args
|
| 194 |
+
self.use_mla = use_mla
|
| 195 |
+
self.kv_lora_rank = kv_lora_rank
|
| 196 |
+
self.q_lora_rank = q_lora_rank
|
| 197 |
+
self.qk_rope_head_dim = qk_rope_head_dim
|
| 198 |
+
self.qk_nope_head_dim = qk_nope_head_dim
|
| 199 |
+
self.v_head_dim = v_head_dim
|
| 200 |
+
|
| 201 |
+
# DeepSeek related args
|
| 202 |
+
self.moe_layer_num_skipped = moe_layer_num_skipped
|
| 203 |
+
self.norm_topk_prob = norm_topk_prob
|
| 204 |
+
self.routed_scaling_factor = routed_scaling_factor
|
| 205 |
+
self.group_limited_greedy = group_limited_greedy
|
| 206 |
+
self.n_group = n_group
|
| 207 |
+
self.topk_group = topk_group
|
| 208 |
+
|
| 209 |
+
super().__init__(
|
| 210 |
+
pad_token_id=pad_token_id,
|
| 211 |
+
bos_token_id=bos_token_id,
|
| 212 |
+
eos_token_id=eos_token_id,
|
| 213 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 214 |
+
**kwargs,
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
def _rope_scaling_validation(self):
|
| 218 |
+
"""
|
| 219 |
+
Validate the `rope_scaling` configuration.
|
| 220 |
+
"""
|
| 221 |
+
if self.rope_scaling is None:
|
| 222 |
+
return
|
| 223 |
+
|
| 224 |
+
if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
|
| 225 |
+
raise ValueError(
|
| 226 |
+
"`rope_scaling` must be a dictionary with with two fields, `type` and `factor` or `type` and `alpha`, "
|
| 227 |
+
f"got {self.rope_scaling}"
|
| 228 |
+
)
|
| 229 |
+
rope_scaling_type = self.rope_scaling.get("type", None)
|
| 230 |
+
rope_scaling_factor = self.rope_scaling.get("factor", None)
|
| 231 |
+
rope_scaling_alpha = self.rope_scaling.get("alpha", None)
|
| 232 |
+
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
|
| 233 |
+
raise ValueError(
|
| 234 |
+
f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
|
| 235 |
+
)
|
| 236 |
+
if rope_scaling_factor is None and rope_scaling_alpha is None:
|
| 237 |
+
raise ValueError("`rope_scaling`'s factor or alpha field must be have one, got both of none")
|
| 238 |
+
if rope_scaling_factor is not None:
|
| 239 |
+
if not isinstance(rope_scaling_factor, float) or rope_scaling_factor <= 1.0:
|
| 240 |
+
raise ValueError(f"`rope_scaling`'s factor field must be a float > 1.0, got {rope_scaling_factor}")
|
| 241 |
+
if rope_scaling_alpha is not None:
|
| 242 |
+
if not isinstance(rope_scaling_alpha, float) or rope_scaling_alpha <= 1.0:
|
| 243 |
+
raise ValueError(f"`rope_scaling`'s alpha field must be a float > 1.0, got {rope_scaling_alpha}")
|
hy.tiktoken
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:83bd14295bb75812ceb3976a68794f1d71a4a477fa4df30c09be85f6d3e31e18
|
| 3 |
+
size 3285304542
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,811 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 3285213184
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"model.embed_tokens.biases": "model.safetensors",
|
| 7 |
+
"model.embed_tokens.scales": "model.safetensors",
|
| 8 |
+
"model.embed_tokens.weight": "model.safetensors",
|
| 9 |
+
"model.layers.0.input_layernorm.weight": "model.safetensors",
|
| 10 |
+
"model.layers.0.mlp.down_proj.biases": "model.safetensors",
|
| 11 |
+
"model.layers.0.mlp.down_proj.scales": "model.safetensors",
|
| 12 |
+
"model.layers.0.mlp.down_proj.weight": "model.safetensors",
|
| 13 |
+
"model.layers.0.mlp.gate_proj.biases": "model.safetensors",
|
| 14 |
+
"model.layers.0.mlp.gate_proj.scales": "model.safetensors",
|
| 15 |
+
"model.layers.0.mlp.gate_proj.weight": "model.safetensors",
|
| 16 |
+
"model.layers.0.mlp.up_proj.biases": "model.safetensors",
|
| 17 |
+
"model.layers.0.mlp.up_proj.scales": "model.safetensors",
|
| 18 |
+
"model.layers.0.mlp.up_proj.weight": "model.safetensors",
|
| 19 |
+
"model.layers.0.post_attention_layernorm.weight": "model.safetensors",
|
| 20 |
+
"model.layers.0.self_attn.k_proj.biases": "model.safetensors",
|
| 21 |
+
"model.layers.0.self_attn.k_proj.scales": "model.safetensors",
|
| 22 |
+
"model.layers.0.self_attn.k_proj.weight": "model.safetensors",
|
| 23 |
+
"model.layers.0.self_attn.key_layernorm.weight": "model.safetensors",
|
| 24 |
+
"model.layers.0.self_attn.o_proj.biases": "model.safetensors",
|
| 25 |
+
"model.layers.0.self_attn.o_proj.scales": "model.safetensors",
|
| 26 |
+
"model.layers.0.self_attn.o_proj.weight": "model.safetensors",
|
| 27 |
+
"model.layers.0.self_attn.q_proj.biases": "model.safetensors",
|
| 28 |
+
"model.layers.0.self_attn.q_proj.scales": "model.safetensors",
|
| 29 |
+
"model.layers.0.self_attn.q_proj.weight": "model.safetensors",
|
| 30 |
+
"model.layers.0.self_attn.query_layernorm.weight": "model.safetensors",
|
| 31 |
+
"model.layers.0.self_attn.v_proj.biases": "model.safetensors",
|
| 32 |
+
"model.layers.0.self_attn.v_proj.scales": "model.safetensors",
|
| 33 |
+
"model.layers.0.self_attn.v_proj.weight": "model.safetensors",
|
| 34 |
+
"model.layers.1.input_layernorm.weight": "model.safetensors",
|
| 35 |
+
"model.layers.1.mlp.down_proj.biases": "model.safetensors",
|
| 36 |
+
"model.layers.1.mlp.down_proj.scales": "model.safetensors",
|
| 37 |
+
"model.layers.1.mlp.down_proj.weight": "model.safetensors",
|
| 38 |
+
"model.layers.1.mlp.gate_proj.biases": "model.safetensors",
|
| 39 |
+
"model.layers.1.mlp.gate_proj.scales": "model.safetensors",
|
| 40 |
+
"model.layers.1.mlp.gate_proj.weight": "model.safetensors",
|
| 41 |
+
"model.layers.1.mlp.up_proj.biases": "model.safetensors",
|
| 42 |
+
"model.layers.1.mlp.up_proj.scales": "model.safetensors",
|
| 43 |
+
"model.layers.1.mlp.up_proj.weight": "model.safetensors",
|
| 44 |
+
"model.layers.1.post_attention_layernorm.weight": "model.safetensors",
|
| 45 |
+
"model.layers.1.self_attn.k_proj.biases": "model.safetensors",
|
| 46 |
+
"model.layers.1.self_attn.k_proj.scales": "model.safetensors",
|
| 47 |
+
"model.layers.1.self_attn.k_proj.weight": "model.safetensors",
|
| 48 |
+
"model.layers.1.self_attn.key_layernorm.weight": "model.safetensors",
|
| 49 |
+
"model.layers.1.self_attn.o_proj.biases": "model.safetensors",
|
| 50 |
+
"model.layers.1.self_attn.o_proj.scales": "model.safetensors",
|
| 51 |
+
"model.layers.1.self_attn.o_proj.weight": "model.safetensors",
|
| 52 |
+
"model.layers.1.self_attn.q_proj.biases": "model.safetensors",
|
| 53 |
+
"model.layers.1.self_attn.q_proj.scales": "model.safetensors",
|
| 54 |
+
"model.layers.1.self_attn.q_proj.weight": "model.safetensors",
|
| 55 |
+
"model.layers.1.self_attn.query_layernorm.weight": "model.safetensors",
|
| 56 |
+
"model.layers.1.self_attn.v_proj.biases": "model.safetensors",
|
| 57 |
+
"model.layers.1.self_attn.v_proj.scales": "model.safetensors",
|
| 58 |
+
"model.layers.1.self_attn.v_proj.weight": "model.safetensors",
|
| 59 |
+
"model.layers.10.input_layernorm.weight": "model.safetensors",
|
| 60 |
+
"model.layers.10.mlp.down_proj.biases": "model.safetensors",
|
| 61 |
+
"model.layers.10.mlp.down_proj.scales": "model.safetensors",
|
| 62 |
+
"model.layers.10.mlp.down_proj.weight": "model.safetensors",
|
| 63 |
+
"model.layers.10.mlp.gate_proj.biases": "model.safetensors",
|
| 64 |
+
"model.layers.10.mlp.gate_proj.scales": "model.safetensors",
|
| 65 |
+
"model.layers.10.mlp.gate_proj.weight": "model.safetensors",
|
| 66 |
+
"model.layers.10.mlp.up_proj.biases": "model.safetensors",
|
| 67 |
+
"model.layers.10.mlp.up_proj.scales": "model.safetensors",
|
| 68 |
+
"model.layers.10.mlp.up_proj.weight": "model.safetensors",
|
| 69 |
+
"model.layers.10.post_attention_layernorm.weight": "model.safetensors",
|
| 70 |
+
"model.layers.10.self_attn.k_proj.biases": "model.safetensors",
|
| 71 |
+
"model.layers.10.self_attn.k_proj.scales": "model.safetensors",
|
| 72 |
+
"model.layers.10.self_attn.k_proj.weight": "model.safetensors",
|
| 73 |
+
"model.layers.10.self_attn.key_layernorm.weight": "model.safetensors",
|
| 74 |
+
"model.layers.10.self_attn.o_proj.biases": "model.safetensors",
|
| 75 |
+
"model.layers.10.self_attn.o_proj.scales": "model.safetensors",
|
| 76 |
+
"model.layers.10.self_attn.o_proj.weight": "model.safetensors",
|
| 77 |
+
"model.layers.10.self_attn.q_proj.biases": "model.safetensors",
|
| 78 |
+
"model.layers.10.self_attn.q_proj.scales": "model.safetensors",
|
| 79 |
+
"model.layers.10.self_attn.q_proj.weight": "model.safetensors",
|
| 80 |
+
"model.layers.10.self_attn.query_layernorm.weight": "model.safetensors",
|
| 81 |
+
"model.layers.10.self_attn.v_proj.biases": "model.safetensors",
|
| 82 |
+
"model.layers.10.self_attn.v_proj.scales": "model.safetensors",
|
| 83 |
+
"model.layers.10.self_attn.v_proj.weight": "model.safetensors",
|
| 84 |
+
"model.layers.11.input_layernorm.weight": "model.safetensors",
|
| 85 |
+
"model.layers.11.mlp.down_proj.biases": "model.safetensors",
|
| 86 |
+
"model.layers.11.mlp.down_proj.scales": "model.safetensors",
|
| 87 |
+
"model.layers.11.mlp.down_proj.weight": "model.safetensors",
|
| 88 |
+
"model.layers.11.mlp.gate_proj.biases": "model.safetensors",
|
| 89 |
+
"model.layers.11.mlp.gate_proj.scales": "model.safetensors",
|
| 90 |
+
"model.layers.11.mlp.gate_proj.weight": "model.safetensors",
|
| 91 |
+
"model.layers.11.mlp.up_proj.biases": "model.safetensors",
|
| 92 |
+
"model.layers.11.mlp.up_proj.scales": "model.safetensors",
|
| 93 |
+
"model.layers.11.mlp.up_proj.weight": "model.safetensors",
|
| 94 |
+
"model.layers.11.post_attention_layernorm.weight": "model.safetensors",
|
| 95 |
+
"model.layers.11.self_attn.k_proj.biases": "model.safetensors",
|
| 96 |
+
"model.layers.11.self_attn.k_proj.scales": "model.safetensors",
|
| 97 |
+
"model.layers.11.self_attn.k_proj.weight": "model.safetensors",
|
| 98 |
+
"model.layers.11.self_attn.key_layernorm.weight": "model.safetensors",
|
| 99 |
+
"model.layers.11.self_attn.o_proj.biases": "model.safetensors",
|
| 100 |
+
"model.layers.11.self_attn.o_proj.scales": "model.safetensors",
|
| 101 |
+
"model.layers.11.self_attn.o_proj.weight": "model.safetensors",
|
| 102 |
+
"model.layers.11.self_attn.q_proj.biases": "model.safetensors",
|
| 103 |
+
"model.layers.11.self_attn.q_proj.scales": "model.safetensors",
|
| 104 |
+
"model.layers.11.self_attn.q_proj.weight": "model.safetensors",
|
| 105 |
+
"model.layers.11.self_attn.query_layernorm.weight": "model.safetensors",
|
| 106 |
+
"model.layers.11.self_attn.v_proj.biases": "model.safetensors",
|
| 107 |
+
"model.layers.11.self_attn.v_proj.scales": "model.safetensors",
|
| 108 |
+
"model.layers.11.self_attn.v_proj.weight": "model.safetensors",
|
| 109 |
+
"model.layers.12.input_layernorm.weight": "model.safetensors",
|
| 110 |
+
"model.layers.12.mlp.down_proj.biases": "model.safetensors",
|
| 111 |
+
"model.layers.12.mlp.down_proj.scales": "model.safetensors",
|
| 112 |
+
"model.layers.12.mlp.down_proj.weight": "model.safetensors",
|
| 113 |
+
"model.layers.12.mlp.gate_proj.biases": "model.safetensors",
|
| 114 |
+
"model.layers.12.mlp.gate_proj.scales": "model.safetensors",
|
| 115 |
+
"model.layers.12.mlp.gate_proj.weight": "model.safetensors",
|
| 116 |
+
"model.layers.12.mlp.up_proj.biases": "model.safetensors",
|
| 117 |
+
"model.layers.12.mlp.up_proj.scales": "model.safetensors",
|
| 118 |
+
"model.layers.12.mlp.up_proj.weight": "model.safetensors",
|
| 119 |
+
"model.layers.12.post_attention_layernorm.weight": "model.safetensors",
|
| 120 |
+
"model.layers.12.self_attn.k_proj.biases": "model.safetensors",
|
| 121 |
+
"model.layers.12.self_attn.k_proj.scales": "model.safetensors",
|
| 122 |
+
"model.layers.12.self_attn.k_proj.weight": "model.safetensors",
|
| 123 |
+
"model.layers.12.self_attn.key_layernorm.weight": "model.safetensors",
|
| 124 |
+
"model.layers.12.self_attn.o_proj.biases": "model.safetensors",
|
| 125 |
+
"model.layers.12.self_attn.o_proj.scales": "model.safetensors",
|
| 126 |
+
"model.layers.12.self_attn.o_proj.weight": "model.safetensors",
|
| 127 |
+
"model.layers.12.self_attn.q_proj.biases": "model.safetensors",
|
| 128 |
+
"model.layers.12.self_attn.q_proj.scales": "model.safetensors",
|
| 129 |
+
"model.layers.12.self_attn.q_proj.weight": "model.safetensors",
|
| 130 |
+
"model.layers.12.self_attn.query_layernorm.weight": "model.safetensors",
|
| 131 |
+
"model.layers.12.self_attn.v_proj.biases": "model.safetensors",
|
| 132 |
+
"model.layers.12.self_attn.v_proj.scales": "model.safetensors",
|
| 133 |
+
"model.layers.12.self_attn.v_proj.weight": "model.safetensors",
|
| 134 |
+
"model.layers.13.input_layernorm.weight": "model.safetensors",
|
| 135 |
+
"model.layers.13.mlp.down_proj.biases": "model.safetensors",
|
| 136 |
+
"model.layers.13.mlp.down_proj.scales": "model.safetensors",
|
| 137 |
+
"model.layers.13.mlp.down_proj.weight": "model.safetensors",
|
| 138 |
+
"model.layers.13.mlp.gate_proj.biases": "model.safetensors",
|
| 139 |
+
"model.layers.13.mlp.gate_proj.scales": "model.safetensors",
|
| 140 |
+
"model.layers.13.mlp.gate_proj.weight": "model.safetensors",
|
| 141 |
+
"model.layers.13.mlp.up_proj.biases": "model.safetensors",
|
| 142 |
+
"model.layers.13.mlp.up_proj.scales": "model.safetensors",
|
| 143 |
+
"model.layers.13.mlp.up_proj.weight": "model.safetensors",
|
| 144 |
+
"model.layers.13.post_attention_layernorm.weight": "model.safetensors",
|
| 145 |
+
"model.layers.13.self_attn.k_proj.biases": "model.safetensors",
|
| 146 |
+
"model.layers.13.self_attn.k_proj.scales": "model.safetensors",
|
| 147 |
+
"model.layers.13.self_attn.k_proj.weight": "model.safetensors",
|
| 148 |
+
"model.layers.13.self_attn.key_layernorm.weight": "model.safetensors",
|
| 149 |
+
"model.layers.13.self_attn.o_proj.biases": "model.safetensors",
|
| 150 |
+
"model.layers.13.self_attn.o_proj.scales": "model.safetensors",
|
| 151 |
+
"model.layers.13.self_attn.o_proj.weight": "model.safetensors",
|
| 152 |
+
"model.layers.13.self_attn.q_proj.biases": "model.safetensors",
|
| 153 |
+
"model.layers.13.self_attn.q_proj.scales": "model.safetensors",
|
| 154 |
+
"model.layers.13.self_attn.q_proj.weight": "model.safetensors",
|
| 155 |
+
"model.layers.13.self_attn.query_layernorm.weight": "model.safetensors",
|
| 156 |
+
"model.layers.13.self_attn.v_proj.biases": "model.safetensors",
|
| 157 |
+
"model.layers.13.self_attn.v_proj.scales": "model.safetensors",
|
| 158 |
+
"model.layers.13.self_attn.v_proj.weight": "model.safetensors",
|
| 159 |
+
"model.layers.14.input_layernorm.weight": "model.safetensors",
|
| 160 |
+
"model.layers.14.mlp.down_proj.biases": "model.safetensors",
|
| 161 |
+
"model.layers.14.mlp.down_proj.scales": "model.safetensors",
|
| 162 |
+
"model.layers.14.mlp.down_proj.weight": "model.safetensors",
|
| 163 |
+
"model.layers.14.mlp.gate_proj.biases": "model.safetensors",
|
| 164 |
+
"model.layers.14.mlp.gate_proj.scales": "model.safetensors",
|
| 165 |
+
"model.layers.14.mlp.gate_proj.weight": "model.safetensors",
|
| 166 |
+
"model.layers.14.mlp.up_proj.biases": "model.safetensors",
|
| 167 |
+
"model.layers.14.mlp.up_proj.scales": "model.safetensors",
|
| 168 |
+
"model.layers.14.mlp.up_proj.weight": "model.safetensors",
|
| 169 |
+
"model.layers.14.post_attention_layernorm.weight": "model.safetensors",
|
| 170 |
+
"model.layers.14.self_attn.k_proj.biases": "model.safetensors",
|
| 171 |
+
"model.layers.14.self_attn.k_proj.scales": "model.safetensors",
|
| 172 |
+
"model.layers.14.self_attn.k_proj.weight": "model.safetensors",
|
| 173 |
+
"model.layers.14.self_attn.key_layernorm.weight": "model.safetensors",
|
| 174 |
+
"model.layers.14.self_attn.o_proj.biases": "model.safetensors",
|
| 175 |
+
"model.layers.14.self_attn.o_proj.scales": "model.safetensors",
|
| 176 |
+
"model.layers.14.self_attn.o_proj.weight": "model.safetensors",
|
| 177 |
+
"model.layers.14.self_attn.q_proj.biases": "model.safetensors",
|
| 178 |
+
"model.layers.14.self_attn.q_proj.scales": "model.safetensors",
|
| 179 |
+
"model.layers.14.self_attn.q_proj.weight": "model.safetensors",
|
| 180 |
+
"model.layers.14.self_attn.query_layernorm.weight": "model.safetensors",
|
| 181 |
+
"model.layers.14.self_attn.v_proj.biases": "model.safetensors",
|
| 182 |
+
"model.layers.14.self_attn.v_proj.scales": "model.safetensors",
|
| 183 |
+
"model.layers.14.self_attn.v_proj.weight": "model.safetensors",
|
| 184 |
+
"model.layers.15.input_layernorm.weight": "model.safetensors",
|
| 185 |
+
"model.layers.15.mlp.down_proj.biases": "model.safetensors",
|
| 186 |
+
"model.layers.15.mlp.down_proj.scales": "model.safetensors",
|
| 187 |
+
"model.layers.15.mlp.down_proj.weight": "model.safetensors",
|
| 188 |
+
"model.layers.15.mlp.gate_proj.biases": "model.safetensors",
|
| 189 |
+
"model.layers.15.mlp.gate_proj.scales": "model.safetensors",
|
| 190 |
+
"model.layers.15.mlp.gate_proj.weight": "model.safetensors",
|
| 191 |
+
"model.layers.15.mlp.up_proj.biases": "model.safetensors",
|
| 192 |
+
"model.layers.15.mlp.up_proj.scales": "model.safetensors",
|
| 193 |
+
"model.layers.15.mlp.up_proj.weight": "model.safetensors",
|
| 194 |
+
"model.layers.15.post_attention_layernorm.weight": "model.safetensors",
|
| 195 |
+
"model.layers.15.self_attn.k_proj.biases": "model.safetensors",
|
| 196 |
+
"model.layers.15.self_attn.k_proj.scales": "model.safetensors",
|
| 197 |
+
"model.layers.15.self_attn.k_proj.weight": "model.safetensors",
|
| 198 |
+
"model.layers.15.self_attn.key_layernorm.weight": "model.safetensors",
|
| 199 |
+
"model.layers.15.self_attn.o_proj.biases": "model.safetensors",
|
| 200 |
+
"model.layers.15.self_attn.o_proj.scales": "model.safetensors",
|
| 201 |
+
"model.layers.15.self_attn.o_proj.weight": "model.safetensors",
|
| 202 |
+
"model.layers.15.self_attn.q_proj.biases": "model.safetensors",
|
| 203 |
+
"model.layers.15.self_attn.q_proj.scales": "model.safetensors",
|
| 204 |
+
"model.layers.15.self_attn.q_proj.weight": "model.safetensors",
|
| 205 |
+
"model.layers.15.self_attn.query_layernorm.weight": "model.safetensors",
|
| 206 |
+
"model.layers.15.self_attn.v_proj.biases": "model.safetensors",
|
| 207 |
+
"model.layers.15.self_attn.v_proj.scales": "model.safetensors",
|
| 208 |
+
"model.layers.15.self_attn.v_proj.weight": "model.safetensors",
|
| 209 |
+
"model.layers.16.input_layernorm.weight": "model.safetensors",
|
| 210 |
+
"model.layers.16.mlp.down_proj.biases": "model.safetensors",
|
| 211 |
+
"model.layers.16.mlp.down_proj.scales": "model.safetensors",
|
| 212 |
+
"model.layers.16.mlp.down_proj.weight": "model.safetensors",
|
| 213 |
+
"model.layers.16.mlp.gate_proj.biases": "model.safetensors",
|
| 214 |
+
"model.layers.16.mlp.gate_proj.scales": "model.safetensors",
|
| 215 |
+
"model.layers.16.mlp.gate_proj.weight": "model.safetensors",
|
| 216 |
+
"model.layers.16.mlp.up_proj.biases": "model.safetensors",
|
| 217 |
+
"model.layers.16.mlp.up_proj.scales": "model.safetensors",
|
| 218 |
+
"model.layers.16.mlp.up_proj.weight": "model.safetensors",
|
| 219 |
+
"model.layers.16.post_attention_layernorm.weight": "model.safetensors",
|
| 220 |
+
"model.layers.16.self_attn.k_proj.biases": "model.safetensors",
|
| 221 |
+
"model.layers.16.self_attn.k_proj.scales": "model.safetensors",
|
| 222 |
+
"model.layers.16.self_attn.k_proj.weight": "model.safetensors",
|
| 223 |
+
"model.layers.16.self_attn.key_layernorm.weight": "model.safetensors",
|
| 224 |
+
"model.layers.16.self_attn.o_proj.biases": "model.safetensors",
|
| 225 |
+
"model.layers.16.self_attn.o_proj.scales": "model.safetensors",
|
| 226 |
+
"model.layers.16.self_attn.o_proj.weight": "model.safetensors",
|
| 227 |
+
"model.layers.16.self_attn.q_proj.biases": "model.safetensors",
|
| 228 |
+
"model.layers.16.self_attn.q_proj.scales": "model.safetensors",
|
| 229 |
+
"model.layers.16.self_attn.q_proj.weight": "model.safetensors",
|
| 230 |
+
"model.layers.16.self_attn.query_layernorm.weight": "model.safetensors",
|
| 231 |
+
"model.layers.16.self_attn.v_proj.biases": "model.safetensors",
|
| 232 |
+
"model.layers.16.self_attn.v_proj.scales": "model.safetensors",
|
| 233 |
+
"model.layers.16.self_attn.v_proj.weight": "model.safetensors",
|
| 234 |
+
"model.layers.17.input_layernorm.weight": "model.safetensors",
|
| 235 |
+
"model.layers.17.mlp.down_proj.biases": "model.safetensors",
|
| 236 |
+
"model.layers.17.mlp.down_proj.scales": "model.safetensors",
|
| 237 |
+
"model.layers.17.mlp.down_proj.weight": "model.safetensors",
|
| 238 |
+
"model.layers.17.mlp.gate_proj.biases": "model.safetensors",
|
| 239 |
+
"model.layers.17.mlp.gate_proj.scales": "model.safetensors",
|
| 240 |
+
"model.layers.17.mlp.gate_proj.weight": "model.safetensors",
|
| 241 |
+
"model.layers.17.mlp.up_proj.biases": "model.safetensors",
|
| 242 |
+
"model.layers.17.mlp.up_proj.scales": "model.safetensors",
|
| 243 |
+
"model.layers.17.mlp.up_proj.weight": "model.safetensors",
|
| 244 |
+
"model.layers.17.post_attention_layernorm.weight": "model.safetensors",
|
| 245 |
+
"model.layers.17.self_attn.k_proj.biases": "model.safetensors",
|
| 246 |
+
"model.layers.17.self_attn.k_proj.scales": "model.safetensors",
|
| 247 |
+
"model.layers.17.self_attn.k_proj.weight": "model.safetensors",
|
| 248 |
+
"model.layers.17.self_attn.key_layernorm.weight": "model.safetensors",
|
| 249 |
+
"model.layers.17.self_attn.o_proj.biases": "model.safetensors",
|
| 250 |
+
"model.layers.17.self_attn.o_proj.scales": "model.safetensors",
|
| 251 |
+
"model.layers.17.self_attn.o_proj.weight": "model.safetensors",
|
| 252 |
+
"model.layers.17.self_attn.q_proj.biases": "model.safetensors",
|
| 253 |
+
"model.layers.17.self_attn.q_proj.scales": "model.safetensors",
|
| 254 |
+
"model.layers.17.self_attn.q_proj.weight": "model.safetensors",
|
| 255 |
+
"model.layers.17.self_attn.query_layernorm.weight": "model.safetensors",
|
| 256 |
+
"model.layers.17.self_attn.v_proj.biases": "model.safetensors",
|
| 257 |
+
"model.layers.17.self_attn.v_proj.scales": "model.safetensors",
|
| 258 |
+
"model.layers.17.self_attn.v_proj.weight": "model.safetensors",
|
| 259 |
+
"model.layers.18.input_layernorm.weight": "model.safetensors",
|
| 260 |
+
"model.layers.18.mlp.down_proj.biases": "model.safetensors",
|
| 261 |
+
"model.layers.18.mlp.down_proj.scales": "model.safetensors",
|
| 262 |
+
"model.layers.18.mlp.down_proj.weight": "model.safetensors",
|
| 263 |
+
"model.layers.18.mlp.gate_proj.biases": "model.safetensors",
|
| 264 |
+
"model.layers.18.mlp.gate_proj.scales": "model.safetensors",
|
| 265 |
+
"model.layers.18.mlp.gate_proj.weight": "model.safetensors",
|
| 266 |
+
"model.layers.18.mlp.up_proj.biases": "model.safetensors",
|
| 267 |
+
"model.layers.18.mlp.up_proj.scales": "model.safetensors",
|
| 268 |
+
"model.layers.18.mlp.up_proj.weight": "model.safetensors",
|
| 269 |
+
"model.layers.18.post_attention_layernorm.weight": "model.safetensors",
|
| 270 |
+
"model.layers.18.self_attn.k_proj.biases": "model.safetensors",
|
| 271 |
+
"model.layers.18.self_attn.k_proj.scales": "model.safetensors",
|
| 272 |
+
"model.layers.18.self_attn.k_proj.weight": "model.safetensors",
|
| 273 |
+
"model.layers.18.self_attn.key_layernorm.weight": "model.safetensors",
|
| 274 |
+
"model.layers.18.self_attn.o_proj.biases": "model.safetensors",
|
| 275 |
+
"model.layers.18.self_attn.o_proj.scales": "model.safetensors",
|
| 276 |
+
"model.layers.18.self_attn.o_proj.weight": "model.safetensors",
|
| 277 |
+
"model.layers.18.self_attn.q_proj.biases": "model.safetensors",
|
| 278 |
+
"model.layers.18.self_attn.q_proj.scales": "model.safetensors",
|
| 279 |
+
"model.layers.18.self_attn.q_proj.weight": "model.safetensors",
|
| 280 |
+
"model.layers.18.self_attn.query_layernorm.weight": "model.safetensors",
|
| 281 |
+
"model.layers.18.self_attn.v_proj.biases": "model.safetensors",
|
| 282 |
+
"model.layers.18.self_attn.v_proj.scales": "model.safetensors",
|
| 283 |
+
"model.layers.18.self_attn.v_proj.weight": "model.safetensors",
|
| 284 |
+
"model.layers.19.input_layernorm.weight": "model.safetensors",
|
| 285 |
+
"model.layers.19.mlp.down_proj.biases": "model.safetensors",
|
| 286 |
+
"model.layers.19.mlp.down_proj.scales": "model.safetensors",
|
| 287 |
+
"model.layers.19.mlp.down_proj.weight": "model.safetensors",
|
| 288 |
+
"model.layers.19.mlp.gate_proj.biases": "model.safetensors",
|
| 289 |
+
"model.layers.19.mlp.gate_proj.scales": "model.safetensors",
|
| 290 |
+
"model.layers.19.mlp.gate_proj.weight": "model.safetensors",
|
| 291 |
+
"model.layers.19.mlp.up_proj.biases": "model.safetensors",
|
| 292 |
+
"model.layers.19.mlp.up_proj.scales": "model.safetensors",
|
| 293 |
+
"model.layers.19.mlp.up_proj.weight": "model.safetensors",
|
| 294 |
+
"model.layers.19.post_attention_layernorm.weight": "model.safetensors",
|
| 295 |
+
"model.layers.19.self_attn.k_proj.biases": "model.safetensors",
|
| 296 |
+
"model.layers.19.self_attn.k_proj.scales": "model.safetensors",
|
| 297 |
+
"model.layers.19.self_attn.k_proj.weight": "model.safetensors",
|
| 298 |
+
"model.layers.19.self_attn.key_layernorm.weight": "model.safetensors",
|
| 299 |
+
"model.layers.19.self_attn.o_proj.biases": "model.safetensors",
|
| 300 |
+
"model.layers.19.self_attn.o_proj.scales": "model.safetensors",
|
| 301 |
+
"model.layers.19.self_attn.o_proj.weight": "model.safetensors",
|
| 302 |
+
"model.layers.19.self_attn.q_proj.biases": "model.safetensors",
|
| 303 |
+
"model.layers.19.self_attn.q_proj.scales": "model.safetensors",
|
| 304 |
+
"model.layers.19.self_attn.q_proj.weight": "model.safetensors",
|
| 305 |
+
"model.layers.19.self_attn.query_layernorm.weight": "model.safetensors",
|
| 306 |
+
"model.layers.19.self_attn.v_proj.biases": "model.safetensors",
|
| 307 |
+
"model.layers.19.self_attn.v_proj.scales": "model.safetensors",
|
| 308 |
+
"model.layers.19.self_attn.v_proj.weight": "model.safetensors",
|
| 309 |
+
"model.layers.2.input_layernorm.weight": "model.safetensors",
|
| 310 |
+
"model.layers.2.mlp.down_proj.biases": "model.safetensors",
|
| 311 |
+
"model.layers.2.mlp.down_proj.scales": "model.safetensors",
|
| 312 |
+
"model.layers.2.mlp.down_proj.weight": "model.safetensors",
|
| 313 |
+
"model.layers.2.mlp.gate_proj.biases": "model.safetensors",
|
| 314 |
+
"model.layers.2.mlp.gate_proj.scales": "model.safetensors",
|
| 315 |
+
"model.layers.2.mlp.gate_proj.weight": "model.safetensors",
|
| 316 |
+
"model.layers.2.mlp.up_proj.biases": "model.safetensors",
|
| 317 |
+
"model.layers.2.mlp.up_proj.scales": "model.safetensors",
|
| 318 |
+
"model.layers.2.mlp.up_proj.weight": "model.safetensors",
|
| 319 |
+
"model.layers.2.post_attention_layernorm.weight": "model.safetensors",
|
| 320 |
+
"model.layers.2.self_attn.k_proj.biases": "model.safetensors",
|
| 321 |
+
"model.layers.2.self_attn.k_proj.scales": "model.safetensors",
|
| 322 |
+
"model.layers.2.self_attn.k_proj.weight": "model.safetensors",
|
| 323 |
+
"model.layers.2.self_attn.key_layernorm.weight": "model.safetensors",
|
| 324 |
+
"model.layers.2.self_attn.o_proj.biases": "model.safetensors",
|
| 325 |
+
"model.layers.2.self_attn.o_proj.scales": "model.safetensors",
|
| 326 |
+
"model.layers.2.self_attn.o_proj.weight": "model.safetensors",
|
| 327 |
+
"model.layers.2.self_attn.q_proj.biases": "model.safetensors",
|
| 328 |
+
"model.layers.2.self_attn.q_proj.scales": "model.safetensors",
|
| 329 |
+
"model.layers.2.self_attn.q_proj.weight": "model.safetensors",
|
| 330 |
+
"model.layers.2.self_attn.query_layernorm.weight": "model.safetensors",
|
| 331 |
+
"model.layers.2.self_attn.v_proj.biases": "model.safetensors",
|
| 332 |
+
"model.layers.2.self_attn.v_proj.scales": "model.safetensors",
|
| 333 |
+
"model.layers.2.self_attn.v_proj.weight": "model.safetensors",
|
| 334 |
+
"model.layers.20.input_layernorm.weight": "model.safetensors",
|
| 335 |
+
"model.layers.20.mlp.down_proj.biases": "model.safetensors",
|
| 336 |
+
"model.layers.20.mlp.down_proj.scales": "model.safetensors",
|
| 337 |
+
"model.layers.20.mlp.down_proj.weight": "model.safetensors",
|
| 338 |
+
"model.layers.20.mlp.gate_proj.biases": "model.safetensors",
|
| 339 |
+
"model.layers.20.mlp.gate_proj.scales": "model.safetensors",
|
| 340 |
+
"model.layers.20.mlp.gate_proj.weight": "model.safetensors",
|
| 341 |
+
"model.layers.20.mlp.up_proj.biases": "model.safetensors",
|
| 342 |
+
"model.layers.20.mlp.up_proj.scales": "model.safetensors",
|
| 343 |
+
"model.layers.20.mlp.up_proj.weight": "model.safetensors",
|
| 344 |
+
"model.layers.20.post_attention_layernorm.weight": "model.safetensors",
|
| 345 |
+
"model.layers.20.self_attn.k_proj.biases": "model.safetensors",
|
| 346 |
+
"model.layers.20.self_attn.k_proj.scales": "model.safetensors",
|
| 347 |
+
"model.layers.20.self_attn.k_proj.weight": "model.safetensors",
|
| 348 |
+
"model.layers.20.self_attn.key_layernorm.weight": "model.safetensors",
|
| 349 |
+
"model.layers.20.self_attn.o_proj.biases": "model.safetensors",
|
| 350 |
+
"model.layers.20.self_attn.o_proj.scales": "model.safetensors",
|
| 351 |
+
"model.layers.20.self_attn.o_proj.weight": "model.safetensors",
|
| 352 |
+
"model.layers.20.self_attn.q_proj.biases": "model.safetensors",
|
| 353 |
+
"model.layers.20.self_attn.q_proj.scales": "model.safetensors",
|
| 354 |
+
"model.layers.20.self_attn.q_proj.weight": "model.safetensors",
|
| 355 |
+
"model.layers.20.self_attn.query_layernorm.weight": "model.safetensors",
|
| 356 |
+
"model.layers.20.self_attn.v_proj.biases": "model.safetensors",
|
| 357 |
+
"model.layers.20.self_attn.v_proj.scales": "model.safetensors",
|
| 358 |
+
"model.layers.20.self_attn.v_proj.weight": "model.safetensors",
|
| 359 |
+
"model.layers.21.input_layernorm.weight": "model.safetensors",
|
| 360 |
+
"model.layers.21.mlp.down_proj.biases": "model.safetensors",
|
| 361 |
+
"model.layers.21.mlp.down_proj.scales": "model.safetensors",
|
| 362 |
+
"model.layers.21.mlp.down_proj.weight": "model.safetensors",
|
| 363 |
+
"model.layers.21.mlp.gate_proj.biases": "model.safetensors",
|
| 364 |
+
"model.layers.21.mlp.gate_proj.scales": "model.safetensors",
|
| 365 |
+
"model.layers.21.mlp.gate_proj.weight": "model.safetensors",
|
| 366 |
+
"model.layers.21.mlp.up_proj.biases": "model.safetensors",
|
| 367 |
+
"model.layers.21.mlp.up_proj.scales": "model.safetensors",
|
| 368 |
+
"model.layers.21.mlp.up_proj.weight": "model.safetensors",
|
| 369 |
+
"model.layers.21.post_attention_layernorm.weight": "model.safetensors",
|
| 370 |
+
"model.layers.21.self_attn.k_proj.biases": "model.safetensors",
|
| 371 |
+
"model.layers.21.self_attn.k_proj.scales": "model.safetensors",
|
| 372 |
+
"model.layers.21.self_attn.k_proj.weight": "model.safetensors",
|
| 373 |
+
"model.layers.21.self_attn.key_layernorm.weight": "model.safetensors",
|
| 374 |
+
"model.layers.21.self_attn.o_proj.biases": "model.safetensors",
|
| 375 |
+
"model.layers.21.self_attn.o_proj.scales": "model.safetensors",
|
| 376 |
+
"model.layers.21.self_attn.o_proj.weight": "model.safetensors",
|
| 377 |
+
"model.layers.21.self_attn.q_proj.biases": "model.safetensors",
|
| 378 |
+
"model.layers.21.self_attn.q_proj.scales": "model.safetensors",
|
| 379 |
+
"model.layers.21.self_attn.q_proj.weight": "model.safetensors",
|
| 380 |
+
"model.layers.21.self_attn.query_layernorm.weight": "model.safetensors",
|
| 381 |
+
"model.layers.21.self_attn.v_proj.biases": "model.safetensors",
|
| 382 |
+
"model.layers.21.self_attn.v_proj.scales": "model.safetensors",
|
| 383 |
+
"model.layers.21.self_attn.v_proj.weight": "model.safetensors",
|
| 384 |
+
"model.layers.22.input_layernorm.weight": "model.safetensors",
|
| 385 |
+
"model.layers.22.mlp.down_proj.biases": "model.safetensors",
|
| 386 |
+
"model.layers.22.mlp.down_proj.scales": "model.safetensors",
|
| 387 |
+
"model.layers.22.mlp.down_proj.weight": "model.safetensors",
|
| 388 |
+
"model.layers.22.mlp.gate_proj.biases": "model.safetensors",
|
| 389 |
+
"model.layers.22.mlp.gate_proj.scales": "model.safetensors",
|
| 390 |
+
"model.layers.22.mlp.gate_proj.weight": "model.safetensors",
|
| 391 |
+
"model.layers.22.mlp.up_proj.biases": "model.safetensors",
|
| 392 |
+
"model.layers.22.mlp.up_proj.scales": "model.safetensors",
|
| 393 |
+
"model.layers.22.mlp.up_proj.weight": "model.safetensors",
|
| 394 |
+
"model.layers.22.post_attention_layernorm.weight": "model.safetensors",
|
| 395 |
+
"model.layers.22.self_attn.k_proj.biases": "model.safetensors",
|
| 396 |
+
"model.layers.22.self_attn.k_proj.scales": "model.safetensors",
|
| 397 |
+
"model.layers.22.self_attn.k_proj.weight": "model.safetensors",
|
| 398 |
+
"model.layers.22.self_attn.key_layernorm.weight": "model.safetensors",
|
| 399 |
+
"model.layers.22.self_attn.o_proj.biases": "model.safetensors",
|
| 400 |
+
"model.layers.22.self_attn.o_proj.scales": "model.safetensors",
|
| 401 |
+
"model.layers.22.self_attn.o_proj.weight": "model.safetensors",
|
| 402 |
+
"model.layers.22.self_attn.q_proj.biases": "model.safetensors",
|
| 403 |
+
"model.layers.22.self_attn.q_proj.scales": "model.safetensors",
|
| 404 |
+
"model.layers.22.self_attn.q_proj.weight": "model.safetensors",
|
| 405 |
+
"model.layers.22.self_attn.query_layernorm.weight": "model.safetensors",
|
| 406 |
+
"model.layers.22.self_attn.v_proj.biases": "model.safetensors",
|
| 407 |
+
"model.layers.22.self_attn.v_proj.scales": "model.safetensors",
|
| 408 |
+
"model.layers.22.self_attn.v_proj.weight": "model.safetensors",
|
| 409 |
+
"model.layers.23.input_layernorm.weight": "model.safetensors",
|
| 410 |
+
"model.layers.23.mlp.down_proj.biases": "model.safetensors",
|
| 411 |
+
"model.layers.23.mlp.down_proj.scales": "model.safetensors",
|
| 412 |
+
"model.layers.23.mlp.down_proj.weight": "model.safetensors",
|
| 413 |
+
"model.layers.23.mlp.gate_proj.biases": "model.safetensors",
|
| 414 |
+
"model.layers.23.mlp.gate_proj.scales": "model.safetensors",
|
| 415 |
+
"model.layers.23.mlp.gate_proj.weight": "model.safetensors",
|
| 416 |
+
"model.layers.23.mlp.up_proj.biases": "model.safetensors",
|
| 417 |
+
"model.layers.23.mlp.up_proj.scales": "model.safetensors",
|
| 418 |
+
"model.layers.23.mlp.up_proj.weight": "model.safetensors",
|
| 419 |
+
"model.layers.23.post_attention_layernorm.weight": "model.safetensors",
|
| 420 |
+
"model.layers.23.self_attn.k_proj.biases": "model.safetensors",
|
| 421 |
+
"model.layers.23.self_attn.k_proj.scales": "model.safetensors",
|
| 422 |
+
"model.layers.23.self_attn.k_proj.weight": "model.safetensors",
|
| 423 |
+
"model.layers.23.self_attn.key_layernorm.weight": "model.safetensors",
|
| 424 |
+
"model.layers.23.self_attn.o_proj.biases": "model.safetensors",
|
| 425 |
+
"model.layers.23.self_attn.o_proj.scales": "model.safetensors",
|
| 426 |
+
"model.layers.23.self_attn.o_proj.weight": "model.safetensors",
|
| 427 |
+
"model.layers.23.self_attn.q_proj.biases": "model.safetensors",
|
| 428 |
+
"model.layers.23.self_attn.q_proj.scales": "model.safetensors",
|
| 429 |
+
"model.layers.23.self_attn.q_proj.weight": "model.safetensors",
|
| 430 |
+
"model.layers.23.self_attn.query_layernorm.weight": "model.safetensors",
|
| 431 |
+
"model.layers.23.self_attn.v_proj.biases": "model.safetensors",
|
| 432 |
+
"model.layers.23.self_attn.v_proj.scales": "model.safetensors",
|
| 433 |
+
"model.layers.23.self_attn.v_proj.weight": "model.safetensors",
|
| 434 |
+
"model.layers.24.input_layernorm.weight": "model.safetensors",
|
| 435 |
+
"model.layers.24.mlp.down_proj.biases": "model.safetensors",
|
| 436 |
+
"model.layers.24.mlp.down_proj.scales": "model.safetensors",
|
| 437 |
+
"model.layers.24.mlp.down_proj.weight": "model.safetensors",
|
| 438 |
+
"model.layers.24.mlp.gate_proj.biases": "model.safetensors",
|
| 439 |
+
"model.layers.24.mlp.gate_proj.scales": "model.safetensors",
|
| 440 |
+
"model.layers.24.mlp.gate_proj.weight": "model.safetensors",
|
| 441 |
+
"model.layers.24.mlp.up_proj.biases": "model.safetensors",
|
| 442 |
+
"model.layers.24.mlp.up_proj.scales": "model.safetensors",
|
| 443 |
+
"model.layers.24.mlp.up_proj.weight": "model.safetensors",
|
| 444 |
+
"model.layers.24.post_attention_layernorm.weight": "model.safetensors",
|
| 445 |
+
"model.layers.24.self_attn.k_proj.biases": "model.safetensors",
|
| 446 |
+
"model.layers.24.self_attn.k_proj.scales": "model.safetensors",
|
| 447 |
+
"model.layers.24.self_attn.k_proj.weight": "model.safetensors",
|
| 448 |
+
"model.layers.24.self_attn.key_layernorm.weight": "model.safetensors",
|
| 449 |
+
"model.layers.24.self_attn.o_proj.biases": "model.safetensors",
|
| 450 |
+
"model.layers.24.self_attn.o_proj.scales": "model.safetensors",
|
| 451 |
+
"model.layers.24.self_attn.o_proj.weight": "model.safetensors",
|
| 452 |
+
"model.layers.24.self_attn.q_proj.biases": "model.safetensors",
|
| 453 |
+
"model.layers.24.self_attn.q_proj.scales": "model.safetensors",
|
| 454 |
+
"model.layers.24.self_attn.q_proj.weight": "model.safetensors",
|
| 455 |
+
"model.layers.24.self_attn.query_layernorm.weight": "model.safetensors",
|
| 456 |
+
"model.layers.24.self_attn.v_proj.biases": "model.safetensors",
|
| 457 |
+
"model.layers.24.self_attn.v_proj.scales": "model.safetensors",
|
| 458 |
+
"model.layers.24.self_attn.v_proj.weight": "model.safetensors",
|
| 459 |
+
"model.layers.25.input_layernorm.weight": "model.safetensors",
|
| 460 |
+
"model.layers.25.mlp.down_proj.biases": "model.safetensors",
|
| 461 |
+
"model.layers.25.mlp.down_proj.scales": "model.safetensors",
|
| 462 |
+
"model.layers.25.mlp.down_proj.weight": "model.safetensors",
|
| 463 |
+
"model.layers.25.mlp.gate_proj.biases": "model.safetensors",
|
| 464 |
+
"model.layers.25.mlp.gate_proj.scales": "model.safetensors",
|
| 465 |
+
"model.layers.25.mlp.gate_proj.weight": "model.safetensors",
|
| 466 |
+
"model.layers.25.mlp.up_proj.biases": "model.safetensors",
|
| 467 |
+
"model.layers.25.mlp.up_proj.scales": "model.safetensors",
|
| 468 |
+
"model.layers.25.mlp.up_proj.weight": "model.safetensors",
|
| 469 |
+
"model.layers.25.post_attention_layernorm.weight": "model.safetensors",
|
| 470 |
+
"model.layers.25.self_attn.k_proj.biases": "model.safetensors",
|
| 471 |
+
"model.layers.25.self_attn.k_proj.scales": "model.safetensors",
|
| 472 |
+
"model.layers.25.self_attn.k_proj.weight": "model.safetensors",
|
| 473 |
+
"model.layers.25.self_attn.key_layernorm.weight": "model.safetensors",
|
| 474 |
+
"model.layers.25.self_attn.o_proj.biases": "model.safetensors",
|
| 475 |
+
"model.layers.25.self_attn.o_proj.scales": "model.safetensors",
|
| 476 |
+
"model.layers.25.self_attn.o_proj.weight": "model.safetensors",
|
| 477 |
+
"model.layers.25.self_attn.q_proj.biases": "model.safetensors",
|
| 478 |
+
"model.layers.25.self_attn.q_proj.scales": "model.safetensors",
|
| 479 |
+
"model.layers.25.self_attn.q_proj.weight": "model.safetensors",
|
| 480 |
+
"model.layers.25.self_attn.query_layernorm.weight": "model.safetensors",
|
| 481 |
+
"model.layers.25.self_attn.v_proj.biases": "model.safetensors",
|
| 482 |
+
"model.layers.25.self_attn.v_proj.scales": "model.safetensors",
|
| 483 |
+
"model.layers.25.self_attn.v_proj.weight": "model.safetensors",
|
| 484 |
+
"model.layers.26.input_layernorm.weight": "model.safetensors",
|
| 485 |
+
"model.layers.26.mlp.down_proj.biases": "model.safetensors",
|
| 486 |
+
"model.layers.26.mlp.down_proj.scales": "model.safetensors",
|
| 487 |
+
"model.layers.26.mlp.down_proj.weight": "model.safetensors",
|
| 488 |
+
"model.layers.26.mlp.gate_proj.biases": "model.safetensors",
|
| 489 |
+
"model.layers.26.mlp.gate_proj.scales": "model.safetensors",
|
| 490 |
+
"model.layers.26.mlp.gate_proj.weight": "model.safetensors",
|
| 491 |
+
"model.layers.26.mlp.up_proj.biases": "model.safetensors",
|
| 492 |
+
"model.layers.26.mlp.up_proj.scales": "model.safetensors",
|
| 493 |
+
"model.layers.26.mlp.up_proj.weight": "model.safetensors",
|
| 494 |
+
"model.layers.26.post_attention_layernorm.weight": "model.safetensors",
|
| 495 |
+
"model.layers.26.self_attn.k_proj.biases": "model.safetensors",
|
| 496 |
+
"model.layers.26.self_attn.k_proj.scales": "model.safetensors",
|
| 497 |
+
"model.layers.26.self_attn.k_proj.weight": "model.safetensors",
|
| 498 |
+
"model.layers.26.self_attn.key_layernorm.weight": "model.safetensors",
|
| 499 |
+
"model.layers.26.self_attn.o_proj.biases": "model.safetensors",
|
| 500 |
+
"model.layers.26.self_attn.o_proj.scales": "model.safetensors",
|
| 501 |
+
"model.layers.26.self_attn.o_proj.weight": "model.safetensors",
|
| 502 |
+
"model.layers.26.self_attn.q_proj.biases": "model.safetensors",
|
| 503 |
+
"model.layers.26.self_attn.q_proj.scales": "model.safetensors",
|
| 504 |
+
"model.layers.26.self_attn.q_proj.weight": "model.safetensors",
|
| 505 |
+
"model.layers.26.self_attn.query_layernorm.weight": "model.safetensors",
|
| 506 |
+
"model.layers.26.self_attn.v_proj.biases": "model.safetensors",
|
| 507 |
+
"model.layers.26.self_attn.v_proj.scales": "model.safetensors",
|
| 508 |
+
"model.layers.26.self_attn.v_proj.weight": "model.safetensors",
|
| 509 |
+
"model.layers.27.input_layernorm.weight": "model.safetensors",
|
| 510 |
+
"model.layers.27.mlp.down_proj.biases": "model.safetensors",
|
| 511 |
+
"model.layers.27.mlp.down_proj.scales": "model.safetensors",
|
| 512 |
+
"model.layers.27.mlp.down_proj.weight": "model.safetensors",
|
| 513 |
+
"model.layers.27.mlp.gate_proj.biases": "model.safetensors",
|
| 514 |
+
"model.layers.27.mlp.gate_proj.scales": "model.safetensors",
|
| 515 |
+
"model.layers.27.mlp.gate_proj.weight": "model.safetensors",
|
| 516 |
+
"model.layers.27.mlp.up_proj.biases": "model.safetensors",
|
| 517 |
+
"model.layers.27.mlp.up_proj.scales": "model.safetensors",
|
| 518 |
+
"model.layers.27.mlp.up_proj.weight": "model.safetensors",
|
| 519 |
+
"model.layers.27.post_attention_layernorm.weight": "model.safetensors",
|
| 520 |
+
"model.layers.27.self_attn.k_proj.biases": "model.safetensors",
|
| 521 |
+
"model.layers.27.self_attn.k_proj.scales": "model.safetensors",
|
| 522 |
+
"model.layers.27.self_attn.k_proj.weight": "model.safetensors",
|
| 523 |
+
"model.layers.27.self_attn.key_layernorm.weight": "model.safetensors",
|
| 524 |
+
"model.layers.27.self_attn.o_proj.biases": "model.safetensors",
|
| 525 |
+
"model.layers.27.self_attn.o_proj.scales": "model.safetensors",
|
| 526 |
+
"model.layers.27.self_attn.o_proj.weight": "model.safetensors",
|
| 527 |
+
"model.layers.27.self_attn.q_proj.biases": "model.safetensors",
|
| 528 |
+
"model.layers.27.self_attn.q_proj.scales": "model.safetensors",
|
| 529 |
+
"model.layers.27.self_attn.q_proj.weight": "model.safetensors",
|
| 530 |
+
"model.layers.27.self_attn.query_layernorm.weight": "model.safetensors",
|
| 531 |
+
"model.layers.27.self_attn.v_proj.biases": "model.safetensors",
|
| 532 |
+
"model.layers.27.self_attn.v_proj.scales": "model.safetensors",
|
| 533 |
+
"model.layers.27.self_attn.v_proj.weight": "model.safetensors",
|
| 534 |
+
"model.layers.28.input_layernorm.weight": "model.safetensors",
|
| 535 |
+
"model.layers.28.mlp.down_proj.biases": "model.safetensors",
|
| 536 |
+
"model.layers.28.mlp.down_proj.scales": "model.safetensors",
|
| 537 |
+
"model.layers.28.mlp.down_proj.weight": "model.safetensors",
|
| 538 |
+
"model.layers.28.mlp.gate_proj.biases": "model.safetensors",
|
| 539 |
+
"model.layers.28.mlp.gate_proj.scales": "model.safetensors",
|
| 540 |
+
"model.layers.28.mlp.gate_proj.weight": "model.safetensors",
|
| 541 |
+
"model.layers.28.mlp.up_proj.biases": "model.safetensors",
|
| 542 |
+
"model.layers.28.mlp.up_proj.scales": "model.safetensors",
|
| 543 |
+
"model.layers.28.mlp.up_proj.weight": "model.safetensors",
|
| 544 |
+
"model.layers.28.post_attention_layernorm.weight": "model.safetensors",
|
| 545 |
+
"model.layers.28.self_attn.k_proj.biases": "model.safetensors",
|
| 546 |
+
"model.layers.28.self_attn.k_proj.scales": "model.safetensors",
|
| 547 |
+
"model.layers.28.self_attn.k_proj.weight": "model.safetensors",
|
| 548 |
+
"model.layers.28.self_attn.key_layernorm.weight": "model.safetensors",
|
| 549 |
+
"model.layers.28.self_attn.o_proj.biases": "model.safetensors",
|
| 550 |
+
"model.layers.28.self_attn.o_proj.scales": "model.safetensors",
|
| 551 |
+
"model.layers.28.self_attn.o_proj.weight": "model.safetensors",
|
| 552 |
+
"model.layers.28.self_attn.q_proj.biases": "model.safetensors",
|
| 553 |
+
"model.layers.28.self_attn.q_proj.scales": "model.safetensors",
|
| 554 |
+
"model.layers.28.self_attn.q_proj.weight": "model.safetensors",
|
| 555 |
+
"model.layers.28.self_attn.query_layernorm.weight": "model.safetensors",
|
| 556 |
+
"model.layers.28.self_attn.v_proj.biases": "model.safetensors",
|
| 557 |
+
"model.layers.28.self_attn.v_proj.scales": "model.safetensors",
|
| 558 |
+
"model.layers.28.self_attn.v_proj.weight": "model.safetensors",
|
| 559 |
+
"model.layers.29.input_layernorm.weight": "model.safetensors",
|
| 560 |
+
"model.layers.29.mlp.down_proj.biases": "model.safetensors",
|
| 561 |
+
"model.layers.29.mlp.down_proj.scales": "model.safetensors",
|
| 562 |
+
"model.layers.29.mlp.down_proj.weight": "model.safetensors",
|
| 563 |
+
"model.layers.29.mlp.gate_proj.biases": "model.safetensors",
|
| 564 |
+
"model.layers.29.mlp.gate_proj.scales": "model.safetensors",
|
| 565 |
+
"model.layers.29.mlp.gate_proj.weight": "model.safetensors",
|
| 566 |
+
"model.layers.29.mlp.up_proj.biases": "model.safetensors",
|
| 567 |
+
"model.layers.29.mlp.up_proj.scales": "model.safetensors",
|
| 568 |
+
"model.layers.29.mlp.up_proj.weight": "model.safetensors",
|
| 569 |
+
"model.layers.29.post_attention_layernorm.weight": "model.safetensors",
|
| 570 |
+
"model.layers.29.self_attn.k_proj.biases": "model.safetensors",
|
| 571 |
+
"model.layers.29.self_attn.k_proj.scales": "model.safetensors",
|
| 572 |
+
"model.layers.29.self_attn.k_proj.weight": "model.safetensors",
|
| 573 |
+
"model.layers.29.self_attn.key_layernorm.weight": "model.safetensors",
|
| 574 |
+
"model.layers.29.self_attn.o_proj.biases": "model.safetensors",
|
| 575 |
+
"model.layers.29.self_attn.o_proj.scales": "model.safetensors",
|
| 576 |
+
"model.layers.29.self_attn.o_proj.weight": "model.safetensors",
|
| 577 |
+
"model.layers.29.self_attn.q_proj.biases": "model.safetensors",
|
| 578 |
+
"model.layers.29.self_attn.q_proj.scales": "model.safetensors",
|
| 579 |
+
"model.layers.29.self_attn.q_proj.weight": "model.safetensors",
|
| 580 |
+
"model.layers.29.self_attn.query_layernorm.weight": "model.safetensors",
|
| 581 |
+
"model.layers.29.self_attn.v_proj.biases": "model.safetensors",
|
| 582 |
+
"model.layers.29.self_attn.v_proj.scales": "model.safetensors",
|
| 583 |
+
"model.layers.29.self_attn.v_proj.weight": "model.safetensors",
|
| 584 |
+
"model.layers.3.input_layernorm.weight": "model.safetensors",
|
| 585 |
+
"model.layers.3.mlp.down_proj.biases": "model.safetensors",
|
| 586 |
+
"model.layers.3.mlp.down_proj.scales": "model.safetensors",
|
| 587 |
+
"model.layers.3.mlp.down_proj.weight": "model.safetensors",
|
| 588 |
+
"model.layers.3.mlp.gate_proj.biases": "model.safetensors",
|
| 589 |
+
"model.layers.3.mlp.gate_proj.scales": "model.safetensors",
|
| 590 |
+
"model.layers.3.mlp.gate_proj.weight": "model.safetensors",
|
| 591 |
+
"model.layers.3.mlp.up_proj.biases": "model.safetensors",
|
| 592 |
+
"model.layers.3.mlp.up_proj.scales": "model.safetensors",
|
| 593 |
+
"model.layers.3.mlp.up_proj.weight": "model.safetensors",
|
| 594 |
+
"model.layers.3.post_attention_layernorm.weight": "model.safetensors",
|
| 595 |
+
"model.layers.3.self_attn.k_proj.biases": "model.safetensors",
|
| 596 |
+
"model.layers.3.self_attn.k_proj.scales": "model.safetensors",
|
| 597 |
+
"model.layers.3.self_attn.k_proj.weight": "model.safetensors",
|
| 598 |
+
"model.layers.3.self_attn.key_layernorm.weight": "model.safetensors",
|
| 599 |
+
"model.layers.3.self_attn.o_proj.biases": "model.safetensors",
|
| 600 |
+
"model.layers.3.self_attn.o_proj.scales": "model.safetensors",
|
| 601 |
+
"model.layers.3.self_attn.o_proj.weight": "model.safetensors",
|
| 602 |
+
"model.layers.3.self_attn.q_proj.biases": "model.safetensors",
|
| 603 |
+
"model.layers.3.self_attn.q_proj.scales": "model.safetensors",
|
| 604 |
+
"model.layers.3.self_attn.q_proj.weight": "model.safetensors",
|
| 605 |
+
"model.layers.3.self_attn.query_layernorm.weight": "model.safetensors",
|
| 606 |
+
"model.layers.3.self_attn.v_proj.biases": "model.safetensors",
|
| 607 |
+
"model.layers.3.self_attn.v_proj.scales": "model.safetensors",
|
| 608 |
+
"model.layers.3.self_attn.v_proj.weight": "model.safetensors",
|
| 609 |
+
"model.layers.30.input_layernorm.weight": "model.safetensors",
|
| 610 |
+
"model.layers.30.mlp.down_proj.biases": "model.safetensors",
|
| 611 |
+
"model.layers.30.mlp.down_proj.scales": "model.safetensors",
|
| 612 |
+
"model.layers.30.mlp.down_proj.weight": "model.safetensors",
|
| 613 |
+
"model.layers.30.mlp.gate_proj.biases": "model.safetensors",
|
| 614 |
+
"model.layers.30.mlp.gate_proj.scales": "model.safetensors",
|
| 615 |
+
"model.layers.30.mlp.gate_proj.weight": "model.safetensors",
|
| 616 |
+
"model.layers.30.mlp.up_proj.biases": "model.safetensors",
|
| 617 |
+
"model.layers.30.mlp.up_proj.scales": "model.safetensors",
|
| 618 |
+
"model.layers.30.mlp.up_proj.weight": "model.safetensors",
|
| 619 |
+
"model.layers.30.post_attention_layernorm.weight": "model.safetensors",
|
| 620 |
+
"model.layers.30.self_attn.k_proj.biases": "model.safetensors",
|
| 621 |
+
"model.layers.30.self_attn.k_proj.scales": "model.safetensors",
|
| 622 |
+
"model.layers.30.self_attn.k_proj.weight": "model.safetensors",
|
| 623 |
+
"model.layers.30.self_attn.key_layernorm.weight": "model.safetensors",
|
| 624 |
+
"model.layers.30.self_attn.o_proj.biases": "model.safetensors",
|
| 625 |
+
"model.layers.30.self_attn.o_proj.scales": "model.safetensors",
|
| 626 |
+
"model.layers.30.self_attn.o_proj.weight": "model.safetensors",
|
| 627 |
+
"model.layers.30.self_attn.q_proj.biases": "model.safetensors",
|
| 628 |
+
"model.layers.30.self_attn.q_proj.scales": "model.safetensors",
|
| 629 |
+
"model.layers.30.self_attn.q_proj.weight": "model.safetensors",
|
| 630 |
+
"model.layers.30.self_attn.query_layernorm.weight": "model.safetensors",
|
| 631 |
+
"model.layers.30.self_attn.v_proj.biases": "model.safetensors",
|
| 632 |
+
"model.layers.30.self_attn.v_proj.scales": "model.safetensors",
|
| 633 |
+
"model.layers.30.self_attn.v_proj.weight": "model.safetensors",
|
| 634 |
+
"model.layers.31.input_layernorm.weight": "model.safetensors",
|
| 635 |
+
"model.layers.31.mlp.down_proj.biases": "model.safetensors",
|
| 636 |
+
"model.layers.31.mlp.down_proj.scales": "model.safetensors",
|
| 637 |
+
"model.layers.31.mlp.down_proj.weight": "model.safetensors",
|
| 638 |
+
"model.layers.31.mlp.gate_proj.biases": "model.safetensors",
|
| 639 |
+
"model.layers.31.mlp.gate_proj.scales": "model.safetensors",
|
| 640 |
+
"model.layers.31.mlp.gate_proj.weight": "model.safetensors",
|
| 641 |
+
"model.layers.31.mlp.up_proj.biases": "model.safetensors",
|
| 642 |
+
"model.layers.31.mlp.up_proj.scales": "model.safetensors",
|
| 643 |
+
"model.layers.31.mlp.up_proj.weight": "model.safetensors",
|
| 644 |
+
"model.layers.31.post_attention_layernorm.weight": "model.safetensors",
|
| 645 |
+
"model.layers.31.self_attn.k_proj.biases": "model.safetensors",
|
| 646 |
+
"model.layers.31.self_attn.k_proj.scales": "model.safetensors",
|
| 647 |
+
"model.layers.31.self_attn.k_proj.weight": "model.safetensors",
|
| 648 |
+
"model.layers.31.self_attn.key_layernorm.weight": "model.safetensors",
|
| 649 |
+
"model.layers.31.self_attn.o_proj.biases": "model.safetensors",
|
| 650 |
+
"model.layers.31.self_attn.o_proj.scales": "model.safetensors",
|
| 651 |
+
"model.layers.31.self_attn.o_proj.weight": "model.safetensors",
|
| 652 |
+
"model.layers.31.self_attn.q_proj.biases": "model.safetensors",
|
| 653 |
+
"model.layers.31.self_attn.q_proj.scales": "model.safetensors",
|
| 654 |
+
"model.layers.31.self_attn.q_proj.weight": "model.safetensors",
|
| 655 |
+
"model.layers.31.self_attn.query_layernorm.weight": "model.safetensors",
|
| 656 |
+
"model.layers.31.self_attn.v_proj.biases": "model.safetensors",
|
| 657 |
+
"model.layers.31.self_attn.v_proj.scales": "model.safetensors",
|
| 658 |
+
"model.layers.31.self_attn.v_proj.weight": "model.safetensors",
|
| 659 |
+
"model.layers.4.input_layernorm.weight": "model.safetensors",
|
| 660 |
+
"model.layers.4.mlp.down_proj.biases": "model.safetensors",
|
| 661 |
+
"model.layers.4.mlp.down_proj.scales": "model.safetensors",
|
| 662 |
+
"model.layers.4.mlp.down_proj.weight": "model.safetensors",
|
| 663 |
+
"model.layers.4.mlp.gate_proj.biases": "model.safetensors",
|
| 664 |
+
"model.layers.4.mlp.gate_proj.scales": "model.safetensors",
|
| 665 |
+
"model.layers.4.mlp.gate_proj.weight": "model.safetensors",
|
| 666 |
+
"model.layers.4.mlp.up_proj.biases": "model.safetensors",
|
| 667 |
+
"model.layers.4.mlp.up_proj.scales": "model.safetensors",
|
| 668 |
+
"model.layers.4.mlp.up_proj.weight": "model.safetensors",
|
| 669 |
+
"model.layers.4.post_attention_layernorm.weight": "model.safetensors",
|
| 670 |
+
"model.layers.4.self_attn.k_proj.biases": "model.safetensors",
|
| 671 |
+
"model.layers.4.self_attn.k_proj.scales": "model.safetensors",
|
| 672 |
+
"model.layers.4.self_attn.k_proj.weight": "model.safetensors",
|
| 673 |
+
"model.layers.4.self_attn.key_layernorm.weight": "model.safetensors",
|
| 674 |
+
"model.layers.4.self_attn.o_proj.biases": "model.safetensors",
|
| 675 |
+
"model.layers.4.self_attn.o_proj.scales": "model.safetensors",
|
| 676 |
+
"model.layers.4.self_attn.o_proj.weight": "model.safetensors",
|
| 677 |
+
"model.layers.4.self_attn.q_proj.biases": "model.safetensors",
|
| 678 |
+
"model.layers.4.self_attn.q_proj.scales": "model.safetensors",
|
| 679 |
+
"model.layers.4.self_attn.q_proj.weight": "model.safetensors",
|
| 680 |
+
"model.layers.4.self_attn.query_layernorm.weight": "model.safetensors",
|
| 681 |
+
"model.layers.4.self_attn.v_proj.biases": "model.safetensors",
|
| 682 |
+
"model.layers.4.self_attn.v_proj.scales": "model.safetensors",
|
| 683 |
+
"model.layers.4.self_attn.v_proj.weight": "model.safetensors",
|
| 684 |
+
"model.layers.5.input_layernorm.weight": "model.safetensors",
|
| 685 |
+
"model.layers.5.mlp.down_proj.biases": "model.safetensors",
|
| 686 |
+
"model.layers.5.mlp.down_proj.scales": "model.safetensors",
|
| 687 |
+
"model.layers.5.mlp.down_proj.weight": "model.safetensors",
|
| 688 |
+
"model.layers.5.mlp.gate_proj.biases": "model.safetensors",
|
| 689 |
+
"model.layers.5.mlp.gate_proj.scales": "model.safetensors",
|
| 690 |
+
"model.layers.5.mlp.gate_proj.weight": "model.safetensors",
|
| 691 |
+
"model.layers.5.mlp.up_proj.biases": "model.safetensors",
|
| 692 |
+
"model.layers.5.mlp.up_proj.scales": "model.safetensors",
|
| 693 |
+
"model.layers.5.mlp.up_proj.weight": "model.safetensors",
|
| 694 |
+
"model.layers.5.post_attention_layernorm.weight": "model.safetensors",
|
| 695 |
+
"model.layers.5.self_attn.k_proj.biases": "model.safetensors",
|
| 696 |
+
"model.layers.5.self_attn.k_proj.scales": "model.safetensors",
|
| 697 |
+
"model.layers.5.self_attn.k_proj.weight": "model.safetensors",
|
| 698 |
+
"model.layers.5.self_attn.key_layernorm.weight": "model.safetensors",
|
| 699 |
+
"model.layers.5.self_attn.o_proj.biases": "model.safetensors",
|
| 700 |
+
"model.layers.5.self_attn.o_proj.scales": "model.safetensors",
|
| 701 |
+
"model.layers.5.self_attn.o_proj.weight": "model.safetensors",
|
| 702 |
+
"model.layers.5.self_attn.q_proj.biases": "model.safetensors",
|
| 703 |
+
"model.layers.5.self_attn.q_proj.scales": "model.safetensors",
|
| 704 |
+
"model.layers.5.self_attn.q_proj.weight": "model.safetensors",
|
| 705 |
+
"model.layers.5.self_attn.query_layernorm.weight": "model.safetensors",
|
| 706 |
+
"model.layers.5.self_attn.v_proj.biases": "model.safetensors",
|
| 707 |
+
"model.layers.5.self_attn.v_proj.scales": "model.safetensors",
|
| 708 |
+
"model.layers.5.self_attn.v_proj.weight": "model.safetensors",
|
| 709 |
+
"model.layers.6.input_layernorm.weight": "model.safetensors",
|
| 710 |
+
"model.layers.6.mlp.down_proj.biases": "model.safetensors",
|
| 711 |
+
"model.layers.6.mlp.down_proj.scales": "model.safetensors",
|
| 712 |
+
"model.layers.6.mlp.down_proj.weight": "model.safetensors",
|
| 713 |
+
"model.layers.6.mlp.gate_proj.biases": "model.safetensors",
|
| 714 |
+
"model.layers.6.mlp.gate_proj.scales": "model.safetensors",
|
| 715 |
+
"model.layers.6.mlp.gate_proj.weight": "model.safetensors",
|
| 716 |
+
"model.layers.6.mlp.up_proj.biases": "model.safetensors",
|
| 717 |
+
"model.layers.6.mlp.up_proj.scales": "model.safetensors",
|
| 718 |
+
"model.layers.6.mlp.up_proj.weight": "model.safetensors",
|
| 719 |
+
"model.layers.6.post_attention_layernorm.weight": "model.safetensors",
|
| 720 |
+
"model.layers.6.self_attn.k_proj.biases": "model.safetensors",
|
| 721 |
+
"model.layers.6.self_attn.k_proj.scales": "model.safetensors",
|
| 722 |
+
"model.layers.6.self_attn.k_proj.weight": "model.safetensors",
|
| 723 |
+
"model.layers.6.self_attn.key_layernorm.weight": "model.safetensors",
|
| 724 |
+
"model.layers.6.self_attn.o_proj.biases": "model.safetensors",
|
| 725 |
+
"model.layers.6.self_attn.o_proj.scales": "model.safetensors",
|
| 726 |
+
"model.layers.6.self_attn.o_proj.weight": "model.safetensors",
|
| 727 |
+
"model.layers.6.self_attn.q_proj.biases": "model.safetensors",
|
| 728 |
+
"model.layers.6.self_attn.q_proj.scales": "model.safetensors",
|
| 729 |
+
"model.layers.6.self_attn.q_proj.weight": "model.safetensors",
|
| 730 |
+
"model.layers.6.self_attn.query_layernorm.weight": "model.safetensors",
|
| 731 |
+
"model.layers.6.self_attn.v_proj.biases": "model.safetensors",
|
| 732 |
+
"model.layers.6.self_attn.v_proj.scales": "model.safetensors",
|
| 733 |
+
"model.layers.6.self_attn.v_proj.weight": "model.safetensors",
|
| 734 |
+
"model.layers.7.input_layernorm.weight": "model.safetensors",
|
| 735 |
+
"model.layers.7.mlp.down_proj.biases": "model.safetensors",
|
| 736 |
+
"model.layers.7.mlp.down_proj.scales": "model.safetensors",
|
| 737 |
+
"model.layers.7.mlp.down_proj.weight": "model.safetensors",
|
| 738 |
+
"model.layers.7.mlp.gate_proj.biases": "model.safetensors",
|
| 739 |
+
"model.layers.7.mlp.gate_proj.scales": "model.safetensors",
|
| 740 |
+
"model.layers.7.mlp.gate_proj.weight": "model.safetensors",
|
| 741 |
+
"model.layers.7.mlp.up_proj.biases": "model.safetensors",
|
| 742 |
+
"model.layers.7.mlp.up_proj.scales": "model.safetensors",
|
| 743 |
+
"model.layers.7.mlp.up_proj.weight": "model.safetensors",
|
| 744 |
+
"model.layers.7.post_attention_layernorm.weight": "model.safetensors",
|
| 745 |
+
"model.layers.7.self_attn.k_proj.biases": "model.safetensors",
|
| 746 |
+
"model.layers.7.self_attn.k_proj.scales": "model.safetensors",
|
| 747 |
+
"model.layers.7.self_attn.k_proj.weight": "model.safetensors",
|
| 748 |
+
"model.layers.7.self_attn.key_layernorm.weight": "model.safetensors",
|
| 749 |
+
"model.layers.7.self_attn.o_proj.biases": "model.safetensors",
|
| 750 |
+
"model.layers.7.self_attn.o_proj.scales": "model.safetensors",
|
| 751 |
+
"model.layers.7.self_attn.o_proj.weight": "model.safetensors",
|
| 752 |
+
"model.layers.7.self_attn.q_proj.biases": "model.safetensors",
|
| 753 |
+
"model.layers.7.self_attn.q_proj.scales": "model.safetensors",
|
| 754 |
+
"model.layers.7.self_attn.q_proj.weight": "model.safetensors",
|
| 755 |
+
"model.layers.7.self_attn.query_layernorm.weight": "model.safetensors",
|
| 756 |
+
"model.layers.7.self_attn.v_proj.biases": "model.safetensors",
|
| 757 |
+
"model.layers.7.self_attn.v_proj.scales": "model.safetensors",
|
| 758 |
+
"model.layers.7.self_attn.v_proj.weight": "model.safetensors",
|
| 759 |
+
"model.layers.8.input_layernorm.weight": "model.safetensors",
|
| 760 |
+
"model.layers.8.mlp.down_proj.biases": "model.safetensors",
|
| 761 |
+
"model.layers.8.mlp.down_proj.scales": "model.safetensors",
|
| 762 |
+
"model.layers.8.mlp.down_proj.weight": "model.safetensors",
|
| 763 |
+
"model.layers.8.mlp.gate_proj.biases": "model.safetensors",
|
| 764 |
+
"model.layers.8.mlp.gate_proj.scales": "model.safetensors",
|
| 765 |
+
"model.layers.8.mlp.gate_proj.weight": "model.safetensors",
|
| 766 |
+
"model.layers.8.mlp.up_proj.biases": "model.safetensors",
|
| 767 |
+
"model.layers.8.mlp.up_proj.scales": "model.safetensors",
|
| 768 |
+
"model.layers.8.mlp.up_proj.weight": "model.safetensors",
|
| 769 |
+
"model.layers.8.post_attention_layernorm.weight": "model.safetensors",
|
| 770 |
+
"model.layers.8.self_attn.k_proj.biases": "model.safetensors",
|
| 771 |
+
"model.layers.8.self_attn.k_proj.scales": "model.safetensors",
|
| 772 |
+
"model.layers.8.self_attn.k_proj.weight": "model.safetensors",
|
| 773 |
+
"model.layers.8.self_attn.key_layernorm.weight": "model.safetensors",
|
| 774 |
+
"model.layers.8.self_attn.o_proj.biases": "model.safetensors",
|
| 775 |
+
"model.layers.8.self_attn.o_proj.scales": "model.safetensors",
|
| 776 |
+
"model.layers.8.self_attn.o_proj.weight": "model.safetensors",
|
| 777 |
+
"model.layers.8.self_attn.q_proj.biases": "model.safetensors",
|
| 778 |
+
"model.layers.8.self_attn.q_proj.scales": "model.safetensors",
|
| 779 |
+
"model.layers.8.self_attn.q_proj.weight": "model.safetensors",
|
| 780 |
+
"model.layers.8.self_attn.query_layernorm.weight": "model.safetensors",
|
| 781 |
+
"model.layers.8.self_attn.v_proj.biases": "model.safetensors",
|
| 782 |
+
"model.layers.8.self_attn.v_proj.scales": "model.safetensors",
|
| 783 |
+
"model.layers.8.self_attn.v_proj.weight": "model.safetensors",
|
| 784 |
+
"model.layers.9.input_layernorm.weight": "model.safetensors",
|
| 785 |
+
"model.layers.9.mlp.down_proj.biases": "model.safetensors",
|
| 786 |
+
"model.layers.9.mlp.down_proj.scales": "model.safetensors",
|
| 787 |
+
"model.layers.9.mlp.down_proj.weight": "model.safetensors",
|
| 788 |
+
"model.layers.9.mlp.gate_proj.biases": "model.safetensors",
|
| 789 |
+
"model.layers.9.mlp.gate_proj.scales": "model.safetensors",
|
| 790 |
+
"model.layers.9.mlp.gate_proj.weight": "model.safetensors",
|
| 791 |
+
"model.layers.9.mlp.up_proj.biases": "model.safetensors",
|
| 792 |
+
"model.layers.9.mlp.up_proj.scales": "model.safetensors",
|
| 793 |
+
"model.layers.9.mlp.up_proj.weight": "model.safetensors",
|
| 794 |
+
"model.layers.9.post_attention_layernorm.weight": "model.safetensors",
|
| 795 |
+
"model.layers.9.self_attn.k_proj.biases": "model.safetensors",
|
| 796 |
+
"model.layers.9.self_attn.k_proj.scales": "model.safetensors",
|
| 797 |
+
"model.layers.9.self_attn.k_proj.weight": "model.safetensors",
|
| 798 |
+
"model.layers.9.self_attn.key_layernorm.weight": "model.safetensors",
|
| 799 |
+
"model.layers.9.self_attn.o_proj.biases": "model.safetensors",
|
| 800 |
+
"model.layers.9.self_attn.o_proj.scales": "model.safetensors",
|
| 801 |
+
"model.layers.9.self_attn.o_proj.weight": "model.safetensors",
|
| 802 |
+
"model.layers.9.self_attn.q_proj.biases": "model.safetensors",
|
| 803 |
+
"model.layers.9.self_attn.q_proj.scales": "model.safetensors",
|
| 804 |
+
"model.layers.9.self_attn.q_proj.weight": "model.safetensors",
|
| 805 |
+
"model.layers.9.self_attn.query_layernorm.weight": "model.safetensors",
|
| 806 |
+
"model.layers.9.self_attn.v_proj.biases": "model.safetensors",
|
| 807 |
+
"model.layers.9.self_attn.v_proj.scales": "model.safetensors",
|
| 808 |
+
"model.layers.9.self_attn.v_proj.weight": "model.safetensors",
|
| 809 |
+
"model.norm.weight": "model.safetensors"
|
| 810 |
+
}
|
| 811 |
+
}
|
modeling_hunyuan.py
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|startoftext|>",
|
| 4 |
+
"<|extra_0|>",
|
| 5 |
+
"<|extra_4|>",
|
| 6 |
+
"<|extra_5|>",
|
| 7 |
+
"<|eos|>"
|
| 8 |
+
]
|
| 9 |
+
}
|
tokenization_hy.py
ADDED
|
@@ -0,0 +1,296 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import base64
|
| 2 |
+
import logging
|
| 3 |
+
import os
|
| 4 |
+
import unicodedata
|
| 5 |
+
from typing import Collection, Dict, List, Set, Tuple, Union
|
| 6 |
+
|
| 7 |
+
import tiktoken
|
| 8 |
+
from transformers import PreTrainedTokenizer, AddedToken
|
| 9 |
+
|
| 10 |
+
logger = logging.getLogger(__name__)
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
VOCAB_FILES_NAMES = {"vocab_file": "hy.tiktoken"}
|
| 14 |
+
|
| 15 |
+
PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
|
| 16 |
+
# PAT_STR = r"""(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+"""
|
| 17 |
+
ENDOFTEXT = "<|endoftext|>"
|
| 18 |
+
STARTOFTEXT = "<|startoftext|>"
|
| 19 |
+
BOSTOKEN = "<|bos|>"
|
| 20 |
+
EOSTOKEN = "<|eos|>"
|
| 21 |
+
PADTOKEN = "<|pad|>"
|
| 22 |
+
|
| 23 |
+
# as the default behavior is changed to allow special tokens in
|
| 24 |
+
# regular texts, the surface forms of special tokens need to be
|
| 25 |
+
# as different as possible to minimize the impact
|
| 26 |
+
EXTRAS = tuple((f"<|extra_{i}|>" for i in range(205)))
|
| 27 |
+
# changed to use actual index to avoid misconfiguration with vocabulary expansion
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
SPECIAL_START_ID = 127957
|
| 31 |
+
|
| 32 |
+
def _load_tiktoken_bpe(tiktoken_bpe_file: str) -> Dict[bytes, int]:
|
| 33 |
+
# with open(tiktoken_bpe_file, "rb") as f:
|
| 34 |
+
# contents = f.read()
|
| 35 |
+
dic = {}
|
| 36 |
+
rank = 0
|
| 37 |
+
for line in open(tiktoken_bpe_file, "rb"):
|
| 38 |
+
if line:
|
| 39 |
+
token, _ = line.split()
|
| 40 |
+
if base64.b64decode(token) in dic:
|
| 41 |
+
continue
|
| 42 |
+
dic[base64.b64decode(token)] = int(rank)
|
| 43 |
+
rank += 1
|
| 44 |
+
global SPECIAL_START_ID
|
| 45 |
+
SPECIAL_START_ID=rank
|
| 46 |
+
return dic
|
| 47 |
+
|
| 48 |
+
# print(SPECIAL_START_ID)
|
| 49 |
+
|
| 50 |
+
SPECIAL_TOKENS = tuple(
|
| 51 |
+
enumerate(
|
| 52 |
+
(
|
| 53 |
+
(
|
| 54 |
+
ENDOFTEXT,
|
| 55 |
+
STARTOFTEXT,
|
| 56 |
+
BOSTOKEN,
|
| 57 |
+
EOSTOKEN,
|
| 58 |
+
PADTOKEN,
|
| 59 |
+
)
|
| 60 |
+
+ EXTRAS
|
| 61 |
+
),
|
| 62 |
+
start=SPECIAL_START_ID,
|
| 63 |
+
)
|
| 64 |
+
)
|
| 65 |
+
# NOTE: Unused Token ID starts from 127962
|
| 66 |
+
SPECIAL_TOKENS_SET = set(t for i, t in SPECIAL_TOKENS)
|
| 67 |
+
|
| 68 |
+
class HYTokenizer(PreTrainedTokenizer):
|
| 69 |
+
"""hunyuan tokenizer."""
|
| 70 |
+
|
| 71 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
| 72 |
+
|
| 73 |
+
def __init__(
|
| 74 |
+
self,
|
| 75 |
+
vocab_file,
|
| 76 |
+
errors="replace",
|
| 77 |
+
extra_vocab_file=None,
|
| 78 |
+
**kwargs,
|
| 79 |
+
):
|
| 80 |
+
super().__init__(**kwargs)
|
| 81 |
+
|
| 82 |
+
# how to handle errors in decoding UTF-8 byte sequences
|
| 83 |
+
# use ignore if you are in streaming inference
|
| 84 |
+
self.errors = errors
|
| 85 |
+
|
| 86 |
+
self.mergeable_ranks = _load_tiktoken_bpe(vocab_file) # type: Dict[bytes, int]
|
| 87 |
+
self.special_tokens = {
|
| 88 |
+
token: index
|
| 89 |
+
for index, token in SPECIAL_TOKENS
|
| 90 |
+
}
|
| 91 |
+
|
| 92 |
+
# try load extra vocab from file
|
| 93 |
+
if extra_vocab_file is not None:
|
| 94 |
+
used_ids = set(self.mergeable_ranks.values()) | set(self.special_tokens.values())
|
| 95 |
+
extra_mergeable_ranks = _load_tiktoken_bpe(extra_vocab_file)
|
| 96 |
+
for token, index in extra_mergeable_ranks.items():
|
| 97 |
+
if token in self.mergeable_ranks:
|
| 98 |
+
logger.info(f"extra token {token} exists, skipping")
|
| 99 |
+
continue
|
| 100 |
+
if index in used_ids:
|
| 101 |
+
logger.info(f'the index {index} for extra token {token} exists, skipping')
|
| 102 |
+
continue
|
| 103 |
+
self.mergeable_ranks[token] = index
|
| 104 |
+
# the index may be sparse after this, but don't worry tiktoken.Encoding will handle this
|
| 105 |
+
|
| 106 |
+
enc = tiktoken.Encoding(
|
| 107 |
+
"HunYuan",
|
| 108 |
+
pat_str=PAT_STR,
|
| 109 |
+
mergeable_ranks=self.mergeable_ranks,
|
| 110 |
+
special_tokens=self.special_tokens,
|
| 111 |
+
)
|
| 112 |
+
assert (
|
| 113 |
+
len(self.mergeable_ranks) + len(self.special_tokens) == enc.n_vocab
|
| 114 |
+
), f"{len(self.mergeable_ranks)} + {len(self.special_tokens)} != {enc.n_vocab} in encoding"
|
| 115 |
+
|
| 116 |
+
self.decoder = {
|
| 117 |
+
v: k for k, v in self.mergeable_ranks.items()
|
| 118 |
+
} # type: dict[int, bytes|str]
|
| 119 |
+
self.decoder.update({v: k for k, v in self.special_tokens.items()})
|
| 120 |
+
|
| 121 |
+
self.tokenizer = enc # type: tiktoken.Encoding
|
| 122 |
+
|
| 123 |
+
self.eod_id = self.tokenizer.eot_token
|
| 124 |
+
self.bod_id = self.special_tokens[STARTOFTEXT]
|
| 125 |
+
self.bos_id = self.special_tokens[BOSTOKEN]
|
| 126 |
+
self.eos_id = self.special_tokens[EOSTOKEN]
|
| 127 |
+
self.pad_id = self.special_tokens[PADTOKEN]
|
| 128 |
+
|
| 129 |
+
def __getstate__(self):
|
| 130 |
+
# for pickle lovers
|
| 131 |
+
state = self.__dict__.copy()
|
| 132 |
+
del state["tokenizer"]
|
| 133 |
+
return state
|
| 134 |
+
|
| 135 |
+
def __setstate__(self, state):
|
| 136 |
+
# tokenizer is not python native; don't pass it; rebuild it
|
| 137 |
+
self.__dict__.update(state)
|
| 138 |
+
enc = tiktoken.Encoding(
|
| 139 |
+
"HunYuan",
|
| 140 |
+
pat_str=PAT_STR,
|
| 141 |
+
mergeable_ranks=self.mergeable_ranks,
|
| 142 |
+
special_tokens=self.special_tokens,
|
| 143 |
+
)
|
| 144 |
+
self.tokenizer = enc
|
| 145 |
+
|
| 146 |
+
def __len__(self) -> int:
|
| 147 |
+
return self.tokenizer.n_vocab
|
| 148 |
+
|
| 149 |
+
def get_vocab(self) -> Dict[bytes, int]:
|
| 150 |
+
return self.mergeable_ranks
|
| 151 |
+
|
| 152 |
+
def convert_tokens_to_ids(
|
| 153 |
+
self, tokens: Union[bytes, str, List[Union[bytes, str]]]
|
| 154 |
+
) -> List[int]:
|
| 155 |
+
ids = []
|
| 156 |
+
if isinstance(tokens, (str, bytes)):
|
| 157 |
+
if tokens in self.special_tokens:
|
| 158 |
+
return self.special_tokens[tokens]
|
| 159 |
+
else:
|
| 160 |
+
return self.mergeable_ranks.get(tokens)
|
| 161 |
+
for token in tokens:
|
| 162 |
+
if token in self.special_tokens:
|
| 163 |
+
ids.append(self.special_tokens[token])
|
| 164 |
+
else:
|
| 165 |
+
ids.append(self.mergeable_ranks.get(token))
|
| 166 |
+
return ids
|
| 167 |
+
|
| 168 |
+
def _add_tokens(
|
| 169 |
+
self,
|
| 170 |
+
new_tokens: Union[List[str], List[AddedToken]],
|
| 171 |
+
special_tokens: bool = False,
|
| 172 |
+
) -> int:
|
| 173 |
+
if not special_tokens and new_tokens:
|
| 174 |
+
raise ValueError("Adding regular tokens is not supported")
|
| 175 |
+
for token in new_tokens:
|
| 176 |
+
surface_form = token.content if isinstance(token, AddedToken) else token
|
| 177 |
+
if surface_form not in SPECIAL_TOKENS_SET:
|
| 178 |
+
raise ValueError("Adding unknown special tokens is not supported")
|
| 179 |
+
return 0
|
| 180 |
+
|
| 181 |
+
def save_vocabulary(self, save_directory: str, **kwargs) -> Tuple[str]:
|
| 182 |
+
"""
|
| 183 |
+
Save only the vocabulary of the tokenizer (vocabulary).
|
| 184 |
+
Returns:
|
| 185 |
+
`Tuple(str)`: Paths to the files saved.
|
| 186 |
+
"""
|
| 187 |
+
file_path = os.path.join(save_directory, "hunyuan.tiktoken")
|
| 188 |
+
with open(file_path, "w", encoding="utf8") as w:
|
| 189 |
+
for k, v in self.mergeable_ranks.items():
|
| 190 |
+
line = base64.b64encode(k).decode("utf8") + " " + str(v) + "\n"
|
| 191 |
+
w.write(line)
|
| 192 |
+
return (file_path,)
|
| 193 |
+
|
| 194 |
+
def tokenize(
|
| 195 |
+
self,
|
| 196 |
+
text: str,
|
| 197 |
+
allowed_special: Union[Set, str] = "all",
|
| 198 |
+
disallowed_special: Union[Collection, str] = (),
|
| 199 |
+
**kwargs,
|
| 200 |
+
) -> List[Union[bytes, str]]:
|
| 201 |
+
"""
|
| 202 |
+
Converts a string in a sequence of tokens.
|
| 203 |
+
Args:
|
| 204 |
+
text (`str`):
|
| 205 |
+
The sequence to be encoded.
|
| 206 |
+
allowed_special (`Literal["all"]` or `set`):
|
| 207 |
+
The surface forms of the tokens to be encoded as special tokens in regular texts.
|
| 208 |
+
Default to "all".
|
| 209 |
+
disallowed_special (`Literal["all"]` or `Collection`):
|
| 210 |
+
The surface forms of the tokens that should not be in regular texts and trigger errors.
|
| 211 |
+
Default to an empty tuple.
|
| 212 |
+
kwargs (additional keyword arguments, *optional*):
|
| 213 |
+
Will be passed to the underlying model specific encode method.
|
| 214 |
+
Returns:
|
| 215 |
+
`List[bytes|str]`: The list of tokens.
|
| 216 |
+
"""
|
| 217 |
+
tokens = []
|
| 218 |
+
text = unicodedata.normalize("NFC", text)
|
| 219 |
+
|
| 220 |
+
# this implementation takes a detour: text -> token id -> token surface forms
|
| 221 |
+
for t in self.tokenizer.encode(
|
| 222 |
+
text, allowed_special=allowed_special, disallowed_special=disallowed_special
|
| 223 |
+
):
|
| 224 |
+
tokens.append(self.decoder[t])
|
| 225 |
+
return tokens
|
| 226 |
+
|
| 227 |
+
def convert_tokens_to_string(self, tokens: List[Union[bytes, str]]) -> str:
|
| 228 |
+
"""
|
| 229 |
+
Converts a sequence of tokens in a single string.
|
| 230 |
+
"""
|
| 231 |
+
text = ""
|
| 232 |
+
temp = b""
|
| 233 |
+
for t in tokens:
|
| 234 |
+
if isinstance(t, str):
|
| 235 |
+
if temp:
|
| 236 |
+
text += temp.decode("utf-8", errors=self.errors)
|
| 237 |
+
temp = b""
|
| 238 |
+
text += t
|
| 239 |
+
elif isinstance(t, bytes):
|
| 240 |
+
temp += t
|
| 241 |
+
else:
|
| 242 |
+
raise TypeError("token should only be of type types or str")
|
| 243 |
+
if temp:
|
| 244 |
+
text += temp.decode("utf-8", errors=self.errors)
|
| 245 |
+
return text
|
| 246 |
+
|
| 247 |
+
@property
|
| 248 |
+
def vocab_size(self):
|
| 249 |
+
return self.tokenizer.n_vocab
|
| 250 |
+
|
| 251 |
+
def _convert_id_to_token(self, index: int) -> Union[bytes, str]:
|
| 252 |
+
"""Converts an id to a token, special tokens included"""
|
| 253 |
+
if index in self.decoder:
|
| 254 |
+
return self.decoder[index]
|
| 255 |
+
raise ValueError("unknown ids")
|
| 256 |
+
|
| 257 |
+
def _convert_token_to_id(self, token: Union[bytes, str]) -> int:
|
| 258 |
+
"""Converts a token to an id using the vocab, special tokens included"""
|
| 259 |
+
if token in self.special_tokens:
|
| 260 |
+
return self.special_tokens[token]
|
| 261 |
+
if token in self.mergeable_ranks:
|
| 262 |
+
return self.mergeable_ranks[token]
|
| 263 |
+
raise ValueError("unknown token")
|
| 264 |
+
|
| 265 |
+
def _tokenize(self, text: str, **kwargs):
|
| 266 |
+
"""
|
| 267 |
+
Converts a string in a sequence of tokens (string), using the tokenizer. Split in words for word-based
|
| 268 |
+
vocabulary or sub-words for sub-word-based vocabularies (BPE/SentencePieces/WordPieces).
|
| 269 |
+
Do NOT take care of added tokens.
|
| 270 |
+
"""
|
| 271 |
+
raise NotImplementedError
|
| 272 |
+
|
| 273 |
+
def _decode(
|
| 274 |
+
self,
|
| 275 |
+
token_ids: Union[int, List[int]],
|
| 276 |
+
skip_special_tokens: bool = False,
|
| 277 |
+
errors: str = None,
|
| 278 |
+
**kwargs,
|
| 279 |
+
) -> str:
|
| 280 |
+
if isinstance(token_ids, int):
|
| 281 |
+
token_ids = [token_ids]
|
| 282 |
+
if skip_special_tokens:
|
| 283 |
+
token_ids = [i for i in token_ids if i < self.eod_id]
|
| 284 |
+
return self.tokenizer.decode(token_ids, errors=errors or self.errors)
|
| 285 |
+
|
| 286 |
+
# tests
|
| 287 |
+
if __name__ == "__main__":
|
| 288 |
+
tokenizer = HYTokenizer.from_pretrained('/hy')
|
| 289 |
+
text = '你好,世界'
|
| 290 |
+
tokens = tokenizer.tokenize(text)
|
| 291 |
+
print(tokens)
|
| 292 |
+
ids = tokenizer.convert_tokens_to_ids(tokens)
|
| 293 |
+
print(ids)
|
| 294 |
+
text2 = tokenizer.convert_tokens_to_string(tokens)
|
| 295 |
+
print(text2)
|
| 296 |
+
ids2 = tokenizer.convert_tokens_to_ids(tokens)
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {},
|
| 3 |
+
"additional_special_tokens": [
|
| 4 |
+
"<|startoftext|>",
|
| 5 |
+
"<|extra_0|>",
|
| 6 |
+
"<|extra_4|>",
|
| 7 |
+
"<|extra_5|>",
|
| 8 |
+
"<|eos|>"
|
| 9 |
+
],
|
| 10 |
+
"auto_map": {
|
| 11 |
+
"AutoTokenizer": [
|
| 12 |
+
"tokenization_hy.HYTokenizer",
|
| 13 |
+
null
|
| 14 |
+
]
|
| 15 |
+
},
|
| 16 |
+
"chat_template": "{% set context = {'has_head': true} %}{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = message['content'] %}{% if loop.index0 == 0 %}{% if content == '' %}{% set _ = context.update({'has_head': false}) %}{% else %}{% set content = '<|startoftext|>' + content + '<|extra_4|>' %}{% endif %}{% endif %}{% if message['role'] == 'user' %}{% if loop.index0 == 1 and not context.has_head %}{% set content = '<|startoftext|>' + content %}{% endif %}{% if loop.index0 == 1 and context.has_head %}{% set content = content + '<|extra_0|>' %}{% else %}{% set content = '<|startoftext|>' + content + '<|extra_0|>' %}{% endif %}{% elif message['role'] == 'assistant' %}{% set content = content + '<|eos|>' %}{% endif %}{{ content }}{% endfor %}",
|
| 17 |
+
"clean_up_tokenization_spaces": false,
|
| 18 |
+
"extra_special_tokens": {},
|
| 19 |
+
"model_max_length": 1048576,
|
| 20 |
+
"tokenizer_class": "HYTokenizer"
|
| 21 |
+
}
|