--- base_model: ContactDoctor/Bio-Medical-3B-CoT-012025 datasets: - collaiborateorg/BioMedData library_name: transformers license: other tags: - generated_from_trainer - medical - Healthcare & Lifesciences - BioMed - chain-of-thought - mlx thumbnail: https://collaiborate.com/logo/logo-blue-bg-1.png model-index: - name: Bio-Medical-3B-CoT-012025 results: [] --- # mlx-community/Bio-Medical-3B-CoT-012025 The Model [mlx-community/Bio-Medical-3B-CoT-012025](https://huggingface.co/mlx-community/Bio-Medical-3B-CoT-012025) was converted to MLX format from [ContactDoctor/Bio-Medical-3B-CoT-012025](https://huggingface.co/ContactDoctor/Bio-Medical-3B-CoT-012025) using mlx-lm version **0.20.1**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("mlx-community/Bio-Medical-3B-CoT-012025") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```