--- library_name: transformers license: llama3.1 base_model: meta-llama/Meta-Llama-3.1-8B tags: - llama-factory - full - generated_from_trainer model-index: - name: oh_scale_x.5_compute_equal results: [] --- # oh_scale_x.5_compute_equal This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B) on the mlfoundations-dev/oh-dcft-v1.3_no-curation_gpt-4o-mini_scale_0.5x dataset. It achieves the following results on the evaluation set: - Loss: 2.4058 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 512 - total_eval_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - num_epochs: 25.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:----:|:---------------:| | 0.7807 | 0.9947 | 165 | 0.7690 | | 0.7139 | 1.9955 | 331 | 0.7520 | | 0.6642 | 2.9962 | 497 | 0.7525 | | 0.6186 | 3.9970 | 663 | 0.7615 | | 0.5777 | 4.9977 | 829 | 0.7785 | | 0.5287 | 5.9985 | 995 | 0.8154 | | 0.473 | 6.9992 | 1161 | 0.8710 | | 0.4134 | 8.0 | 1327 | 0.9475 | | 0.3615 | 8.9947 | 1492 | 1.0203 | | 0.3057 | 9.9955 | 1658 | 1.1177 | | 0.2565 | 10.9962 | 1824 | 1.2368 | | 0.2099 | 11.9970 | 1990 | 1.3552 | | 0.1676 | 12.9977 | 2156 | 1.5071 | | 0.1283 | 13.9985 | 2322 | 1.6324 | | 0.1022 | 14.9992 | 2488 | 1.7542 | | 0.0779 | 16.0 | 2654 | 1.8729 | | 0.0607 | 16.9947 | 2819 | 1.9862 | | 0.0481 | 17.9955 | 2985 | 2.0547 | | 0.038 | 18.9962 | 3151 | 2.1351 | | 0.0306 | 19.9970 | 3317 | 2.2255 | | 0.0256 | 20.9977 | 3483 | 2.2699 | | 0.0221 | 21.9985 | 3649 | 2.3515 | | 0.0197 | 22.9992 | 3815 | 2.3599 | | 0.0186 | 24.0 | 3981 | 2.3888 | | 0.0169 | 24.8681 | 4125 | 2.4058 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.3.0 - Datasets 3.1.0 - Tokenizers 0.20.3