File size: 3,865 Bytes
cb0a261 fd61eb2 cb0a261 a9b9230 cb0a261 6b8b3ae a9b9230 cb0a261 a9b9230 cb0a261 a9b9230 cb0a261 24d9c29 24052a2 a9b9230 cb0a261 6b8b3ae 24d9c29 d147529 24d9c29 6b8b3ae 464b14a 24d9c29 6b8b3ae 24d9c29 a8df997 034c0ce a8df997 034c0ce |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
library_name: transformers
license: other
---
# Daredevil-8B-abliterated

Abliterated version of [mlabonne/Daredevil-8B](https://huggingface.co/mlabonne/Daredevil-8B) using [failspy](https://huggingface.co/failspy)'s notebook.
It based on the technique described in the blog post "[Refusal in LLMs is mediated by a single direction](https://www.alignmentforum.org/posts/jGuXSZgv6qfdhMCuJ/refusal-in-llms-is-mediated-by-a-single-direction)".
Thanks to Andy Arditi, Oscar Balcells Obeso, Aaquib111, Wes Gurnee, Neel Nanda, and failspy.
## π Applications
This is an uncensored model. You can use it for any application that doesn't require alignment, like role-playing.
Tested on LM Studio using the "Llama 3" preset.
## β‘ Quantization
* **GGUF**: https://huggingface.co/mlabonne/Daredevil-8B-abliterated-GGUF
## π Evaluation
### Open LLM Leaderboard
Daredevil-8B-abliterated is the second best-performing 8B model on the Open LLM Leaderboard in terms of MMLU score (27 May 24).

### Nous
Evaluation performed using [LLM AutoEval](https://github.com/mlabonne/llm-autoeval). See the entire leaderboard [here](https://huggingface.co/spaces/mlabonne/Yet_Another_LLM_Leaderboard).
| Model | Average | AGIEval | GPT4All | TruthfulQA | Bigbench |
|---|---:|---:|---:|---:|---:|
| [mlabonne/Daredevil-8B](https://huggingface.co/mlabonne/Daredevil-8B) [π](https://gist.github.com/mlabonne/080f9c5f153ea57a7ab7d932cf896f21) | 55.87 | 44.13 | 73.52 | 59.05 | 46.77 |
| [**mlabonne/Daredevil-8B-abliterated**](https://huggingface.co/mlabonne/Daredevil-8B-abliterated) [π](https://gist.github.com/mlabonne/32cdd8460804662c856bcb2a20acd49e) | **55.06** | **43.29** | **73.33** | **57.47** | **46.17** |
| [mlabonne/Llama-3-8B-Instruct-abliterated-dpomix](https://huggingface.co/mlabonne/Llama-3-8B-Instruct-abliterated-dpomix) [π](https://gist.github.com/mlabonne/d711548df70e2c04771cc68ab33fe2b9) | 52.26 | 41.6 | 69.95 | 54.22 | 43.26 |
| [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) [π](https://gist.github.com/mlabonne/8329284d86035e6019edb11eb0933628) | 51.34 | 41.22 | 69.86 | 51.65 | 42.64 |
| [failspy/Meta-Llama-3-8B-Instruct-abliterated-v3](https://huggingface.co/failspy/Meta-Llama-3-8B-Instruct-abliterated-v3) [π](https://gist.github.com/mlabonne/f46cce0262443365e4cce2b6fa7507fc) | 51.21 | 40.23 | 69.5 | 52.44 | 42.69 |
| [mlabonne/OrpoLlama-3-8B](https://huggingface.co/mlabonne/OrpoLlama-3-8B) [π](https://gist.github.com/mlabonne/22896a1ae164859931cc8f4858c97f6f) | 48.63 | 34.17 | 70.59 | 52.39 | 37.36 |
| [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) [π](https://gist.github.com/mlabonne/616b6245137a9cfc4ea80e4c6e55d847) | 45.42 | 31.1 | 69.95 | 43.91 | 36.7 |
## π³ Model family tree

## π» Usage
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "mlabonne/Daredevil-8B-abliterated"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
``` |