Commit
·
f17ec53
1
Parent(s):
c32e389
Update README.md
Browse files
README.md
CHANGED
|
@@ -87,7 +87,7 @@ class KeyphraseExtractionPipeline(TokenClassificationPipeline):
|
|
| 87 |
def postprocess(self, model_outputs):
|
| 88 |
results = super().postprocess(
|
| 89 |
model_outputs=model_outputs,
|
| 90 |
-
aggregation_strategy=AggregationStrategy.
|
| 91 |
)
|
| 92 |
return np.unique([result.get("word").strip() for result in results])
|
| 93 |
|
|
@@ -118,7 +118,8 @@ the semantic meaning of a text even better than these classical methods.
|
|
| 118 |
Classical methods look at the frequency, occurrence and order of words
|
| 119 |
in the text, whereas these neural approaches can capture long-term
|
| 120 |
semantic dependencies and context of words in a text.
|
| 121 |
-
""".replace("
|
|
|
|
| 122 |
|
| 123 |
keyphrases = extractor(text)
|
| 124 |
|
|
|
|
| 87 |
def postprocess(self, model_outputs):
|
| 88 |
results = super().postprocess(
|
| 89 |
model_outputs=model_outputs,
|
| 90 |
+
aggregation_strategy=AggregationStrategy.SIMPLE,
|
| 91 |
)
|
| 92 |
return np.unique([result.get("word").strip() for result in results])
|
| 93 |
|
|
|
|
| 118 |
Classical methods look at the frequency, occurrence and order of words
|
| 119 |
in the text, whereas these neural approaches can capture long-term
|
| 120 |
semantic dependencies and context of words in a text.
|
| 121 |
+
""".replace("
|
| 122 |
+
", " ")
|
| 123 |
|
| 124 |
keyphrases = extractor(text)
|
| 125 |
|