--- license: mit datasets: - mjjung/Charades-VTune language: - en --- --- license: mit datasets: - ShuhuaiRen/TimeIT language: - en --- # TimeChat-7B-Charades-VTune Model ## Model details We trained [TimeChat](https://arxiv.org/abs/2312.02051) using VTune, a developed instruction-tuning method specifically designed to account for consistency. For the tuning, we utilized 5K training videos from Charades-STA with 99K automatically generated annotations. ## Evaluation We evaluated the model on Charades-CON and Charades-STA. - Charades-CON | Metric | Value | |-----------------|-------------| | Ground | 76.2 | | R-Ground | 69.2 (90.8) | | S-Ground | 36.2 (47.5) | | H-Verify | 44.8 (58.8) | | C-Verify | 42.4 (55.7) | - Charades-STA | Metric | Value | |-----------------|---------| | R@1 IoU=0.3 | 72.74 | | R@1 IoU=0.5 | 58.47 | | R@1 IoU=0.7 | 34.70 | | mIoU | 50.65 | **Paper and Code for more information:** [Paper](https://arxiv.org/abs/2411.12951), [Code](https://github.com/minjoong507/consistency-of-video-llm) ## Citation If you find our research and codes useful, please consider starring our repository and citing our paper: ``` @article{jung2024consistency, title={On the Consistency of Video Large Language Models in Temporal Comprehension}, author={Jung, Minjoon and Xiao, Junbin and Zhang, Byoung-Tak and Yao, Angela}, journal={arXiv preprint arXiv:2411.12951}, year={2024} } ```