--- license: mit datasets: - mjjung/ActivityNet-VTune language: - en --- # TimeChat-7B-ActivityNet-VTune Model ## Model details We trained [TimeChat](https://arxiv.org/abs/2312.02051) using VTune, a developed instruction-tuning method specifically designed to account for consistency. For the tuning, we utilized 10K training videos from ActivityNet-Captions with 205K automatically generated annotations. ## Evaluation We evaluated the model on ActivtyNet-CON and ActivtyNet-Captions. - ActivityNet-CON | Metric | Value | |-----------------|-------------| | Ground | 37.4 | | R-Ground | 28.3 (75.6) | | S-Ground | 10.6 (28.3) | | H-Verify | 19.6 (52.3) | | C-Verify | 19.5 (51.5) | - ActivityNet-Captions | Metric | Value | |-----------------|---------| | R@1 IoU=0.3 | 57.74 | | R@1 IoU=0.5 | 41.05 | | R@1 IoU=0.7 | 23.72 | | mIoU | 40.89 | **Paper and Code for more information:** [Paper](https://arxiv.org/abs/2411.12951), [Code](https://github.com/minjoong507/consistency-of-video-llm) ## Citation If you find our research and codes useful, please consider starring our repository and citing our paper: ``` @article{jung2024consistency, title={On the Consistency of Video Large Language Models in Temporal Comprehension}, author={Jung, Minjoon and Xiao, Junbin and Zhang, Byoung-Tak and Yao, Angela}, journal={arXiv preprint arXiv:2411.12951}, year={2024} } ```