File size: 1,487 Bytes
0694265 a64baa7 0694265 11a91e2 0694265 4065faa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
---
license: mit
datasets:
- mjjung/ActivityNet-VTune
language:
- en
---
# TimeChat-7B-ActivityNet-VTune Model
## Model details
We trained [TimeChat](https://arxiv.org/abs/2312.02051) using VTune, a developed instruction-tuning method specifically designed to account for consistency.
For the tuning, we utilized 10K training videos from ActivityNet-Captions with 205K automatically generated annotations.
## Evaluation
We evaluated the model on ActivtyNet-CON and ActivtyNet-Captions.
- ActivityNet-CON
| Metric | Value |
|-----------------|-------------|
| Ground | 37.4 |
| R-Ground | 28.3 (75.6) |
| S-Ground | 10.6 (28.3) |
| H-Verify | 19.6 (52.3) |
| C-Verify | 19.5 (51.5) |
- ActivityNet-Captions
| Metric | Value |
|-----------------|---------|
| R@1 IoU=0.3 | 57.74 |
| R@1 IoU=0.5 | 41.05 |
| R@1 IoU=0.7 | 23.72 |
| mIoU | 40.89 |
**Paper and Code for more information:**
[Paper](https://arxiv.org/abs/2411.12951), [Code](https://github.com/minjoong507/consistency-of-video-llm)
## Citation
If you find our research and codes useful, please consider starring our repository and citing our paper:
```
@article{jung2024consistency,
title={On the Consistency of Video Large Language Models in Temporal Comprehension},
author={Jung, Minjoon and Xiao, Junbin and Zhang, Byoung-Tak and Yao, Angela},
journal={arXiv preprint arXiv:2411.12951},
year={2024}
}
``` |