File size: 19,077 Bytes
5fbb969
0cfe9d8
5fbb969
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b74a328
9988cef
815aeee
5fbb969
 
 
 
 
 
f22e45d
5fbb969
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1d5421
5fbb969
 
 
 
 
b74a328
5fbb969
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8ee31b
5fbb969
c0ea981
a8ee31b
5fbb969
 
9be2c17
5fbb969
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d54f53
5fbb969
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d54f53
 
 
 
c0ea981
 
2d54f53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0ea981
2d54f53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
942f829
2d54f53
 
942f829
2d54f53
 
1652751
2d54f53
 
 
 
 
 
 
 
 
 
 
b74a328
 
 
 
c05668e
b74a328
c05668e
b74a328
c05668e
b74a328
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c05668e
b74a328
 
 
 
 
 
 
 
 
 
 
5fbb969
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
---
library_name: vllm
language:
- en
- fr
- de
- es
- it
- pt
- nl
- hi
license: apache-2.0
inference: false
base_model:
- mistralai/Mistral-Small-24B-Base-2501
extra_gated_description: >-
  If you want to learn more about how we process your personal data, please read
  our <a href="https://mistral.ai/terms/">Privacy Policy</a>.
tags:
- vllm
pipeline_tag: audio-text-to-text
---

# Voxtral Small 1.0 (24B) - 2507

Voxtral Small is an enhancement of [Mistral Small 3](https://huggingface.co/mistralai/Mistral-Small-24B-Base-2501), incorporating state-of-the-art audio input capabilities while retaining best-in-class text performance. It excels at speech transcription, translation and audio understanding.

Learn more about Voxtral in our blog post [here](https://mistral.ai/news/voxtral) and our [research paper](https://arxiv.org/abs/2507.13264).

## Key Features

Voxtral builds upon Mistral Small 3 with powerful audio understanding capabilities.
- **Dedicated transcription mode**: Voxtral can operate in a pure speech transcription mode to maximize performance. By default, Voxtral automatically predicts the source audio language and transcribes the text accordingly
- **Long-form context**: With a 32k token context length, Voxtral handles audios up to 30 minutes for transcription, or 40 minutes for understanding
- **Built-in Q&A and summarization**: Supports asking questions directly through audio. Analyze audio and generate structured summaries without the need for separate ASR and language models
- **Natively multilingual**: Automatic language detection and state-of-the-art performance in the world’s most widely used languages (English, Spanish, French, Portuguese, Hindi, German, Dutch, Italian)
- **Function-calling straight from voice**: Enables direct triggering of backend functions, workflows, or API calls based on spoken user intents
- **Highly capable at text**: Retains the text understanding capabilities of its language model backbone, Mistral Small 3.1

## Benchmark Results

### Audio

Average word error rate (WER) over the FLEURS, Mozilla Common Voice and Multilingual LibriSpeech benchmarks:

![image/png](https://cdn-uploads.huggingface.co/production/uploads/64161701107962562e9b1006/puASxtajF1lDeGYPrRK5y.png)


### Text 

![image/png](https://cdn-uploads.huggingface.co/production/uploads/5dfcb1aada6d0311fd3d5448/uDg3hKDwJowsNuj-yyt2T.png)

## Usage

The model can be used with the following frameworks;
- [`vllm (recommended)`](https://github.com/vllm-project/vllm): See [here](#vllm-recommended)
- [`Transformers` 🤗](https://github.com/huggingface/transformers): See [here](#transformers-🤗)

**Notes**:

- `temperature=0.2` and `top_p=0.95` for chat completion (*e.g. Audio Understanding*) and `temperature=0.0` for transcription
- Multiple audios per message and multiple user turns with audio are supported
- Function calling is supported
- System prompts are not yet supported


### vLLM (recommended)

We recommend using this model with [vLLM](https://github.com/vllm-project/vllm).

#### Installation

Make sure to install vllm >= `0.10.0`, we recommend using uv

```
uv pip install -U "vllm[audio]" --system
```

Doing so should automatically install [`mistral_common >= 1.8.1`](https://github.com/mistralai/mistral-common/releases/tag/v1.8.1).

To check:
```
python -c "import mistral_common; print(mistral_common.__version__)"
```

#### Offline

You can test that your vLLM setup works as expected by cloning the vLLM repo:

```sh
git clone https://github.com/vllm-project/vllm && cd vllm
```

and then running:

```sh
python examples/offline_inference/audio_language.py --num-audios 2 --model-type voxtral
```

#### Serve

We recommend that you use Voxtral-Small-24B-2507 in a server/client setting. 

1. Spin up a server:

```
vllm serve mistralai/Voxtral-Small-24B-2507 --tokenizer_mode mistral --config_format mistral --load_format mistral --tensor-parallel-size 2 --tool-call-parser mistral --enable-auto-tool-choice
```

**Note:** Running Voxtral-Small-24B-2507 on GPU requires ~55 GB of GPU RAM in bf16 or fp16. 


2. To ping the client you can use a simple Python snippet. See the following examples.


### Audio Instruct

Leverage the audio capabilities of Voxtral-Small-24B-2507 to chat.

Make sure that your client has `mistral-common` with audio installed:

```sh
pip install --upgrade mistral_common\[audio\]
```

<details>
  <summary>Python snippet</summary>

```py
from mistral_common.protocol.instruct.messages import TextChunk, AudioChunk, UserMessage, AssistantMessage, RawAudio
from mistral_common.audio import Audio
from huggingface_hub import hf_hub_download

from openai import OpenAI

# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://<your-server-host>:8000/v1"

client = OpenAI(
    api_key=openai_api_key,
    base_url=openai_api_base,
)

models = client.models.list()
model = models.data[0].id

obama_file = hf_hub_download("patrickvonplaten/audio_samples", "obama.mp3", repo_type="dataset")
bcn_file = hf_hub_download("patrickvonplaten/audio_samples", "bcn_weather.mp3", repo_type="dataset")

def file_to_chunk(file: str) -> AudioChunk:
    audio = Audio.from_file(file, strict=False)
    return AudioChunk.from_audio(audio)

text_chunk = TextChunk(text="Which speaker is more inspiring? Why? How are they different from each other? Answer in French.")
user_msg = UserMessage(content=[file_to_chunk(obama_file), file_to_chunk(bcn_file), text_chunk]).to_openai()

print(30 * "=" + "USER 1" + 30 * "=")
print(text_chunk.text)
print("\n\n")

response = client.chat.completions.create(
    model=model,
    messages=[user_msg],
    temperature=0.2,
    top_p=0.95,
)
content = response.choices[0].message.content

print(30 * "=" + "BOT 1" + 30 * "=")
print(content)
print("\n\n")
# The model could give the following answer:
# ```L'orateur le plus inspirant est le président.
# Il est plus inspirant parce qu'il parle de ses expériences personnelles
# et de son optimisme pour l'avenir du pays.
# Il est différent de l'autre orateur car il ne parle pas de la météo,
# mais plutôt de ses interactions avec les gens et de son rôle en tant que président.```

messages = [
    user_msg,
    AssistantMessage(content=content).to_openai(),
    UserMessage(content="Ok, now please summarize the content of the first audio.").to_openai()
]
print(30 * "=" + "USER 2" + 30 * "=")
print(messages[-1]["content"])
print("\n\n")

response = client.chat.completions.create(
    model=model,
    messages=messages,
    temperature=0.2,
    top_p=0.95,
)
content = response.choices[0].message.content
print(30 * "=" + "BOT 2" + 30 * "=")
print(content)
```
</details>

#### Transcription

Voxtral-Small-24B-2507 has powerful transcription capabilities! 

Make sure that your client has `mistral-common` with audio installed:

```sh
pip install --upgrade mistral_common\[audio\]
```

<details>
  <summary>Python snippet</summary>

```python
from mistral_common.protocol.transcription.request import TranscriptionRequest
from mistral_common.protocol.instruct.messages import RawAudio
from mistral_common.audio import Audio
from huggingface_hub import hf_hub_download

from openai import OpenAI

# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://<your-server-host>:8000/v1"

client = OpenAI(
    api_key=openai_api_key,
    base_url=openai_api_base,
)

models = client.models.list()
model = models.data[0].id

obama_file = hf_hub_download("patrickvonplaten/audio_samples", "obama.mp3", repo_type="dataset")
audio = Audio.from_file(obama_file, strict=False)

audio = RawAudio.from_audio(audio)
req = TranscriptionRequest(model=model, audio=audio, language="en", temperature=0.0).to_openai(exclude=("top_p", "seed"))

response = client.audio.transcriptions.create(**req)
print(response)
```
</details>

#### Function Calling

Voxtral has some experimental function calling support. You can try as shown below.

Make sure that your client has `mistral-common` with audio installed:

```sh
pip install --upgrade mistral_common\[audio\]
```

<details>
  <summary>Python snippet</summary>

```python
from mistral_common.protocol.instruct.messages import AudioChunk, UserMessage, TextChunk
from mistral_common.protocol.transcription.request import TranscriptionRequest
from mistral_common.protocol.instruct.tool_calls import Function, Tool

from mistral_common.audio import Audio
from huggingface_hub import hf_hub_download

from openai import OpenAI

# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://<your-server-host>:8000/v1"

client = OpenAI(
    api_key=openai_api_key,
    base_url=openai_api_base,
)

models = client.models.list()
model = models.data[0].id

tool = Tool(
    function=Function(
        name="get_current_weather",
        description="Get the current weather",
        parameters={
            "type": "object",
            "properties": {
                "location": {
                    "type": "string",
                    "description": "The city and state, e.g. San Francisco, CA",
                },
                "format": {
                    "type": "string",
                    "enum": ["celsius", "fahrenheit"],
                    "description": "The temperature unit to use. Infer this from the user's location.",
                },
            },
            "required": ["location", "format"],
        },
    )
)
tools = [tool.to_openai()]


weather_like = hf_hub_download("patrickvonplaten/audio_samples", "fn_calling.wav", repo_type="dataset")

def file_to_chunk(file: str) -> AudioChunk:
    audio = Audio.from_file(file, strict=False)
    return AudioChunk.from_audio(audio)

audio_chunk = file_to_chunk(weather_like)

print(30 * "=" + "Transcription" + 30 * "=")
req = TranscriptionRequest(model=model, audio=audio_chunk.input_audio, language="en", temperature=0.0).to_openai(exclude=("top_p", "seed"))
response = client.audio.transcriptions.create(**req)
print(response.text) # How is the weather in Madrid at the moment?
print("\n")


print(30 * "=" + "Function calling" + 30 * "=")
audio_chunk = file_to_chunk(weather_like)
user_msg = UserMessage(content=[audio_chunk]).to_openai()
response = client.chat.completions.create(
    model=model,
    messages=[user_msg],
    temperature=0.2,
    top_p=0.95,
    tools=[tool.to_openai()]
)
print(30 * "=" + "BOT 1" + 30 * "=")
print(response.choices[0].message.tool_calls)
print("\n\n")
```
</details>

### Transformers 🤗

Starting with `transformers >= 4.54.0` and above, you can run Voxtral natively!

Install Transformers:
```bash
pip install -U transformers
```

Make sure to have `mistral-common >= 1.8.1` installed with audio dependencies:
```bash
pip install --upgrade "mistral-common[audio]"
```

#### Audio Instruct

<details>
  <summary>➡️ multi-audio + text instruction</summary>

```python
from transformers import VoxtralForConditionalGeneration, AutoProcessor
import torch

device = "cuda"
repo_id = "mistralai/Voxtral-Small-24B-2507"

processor = AutoProcessor.from_pretrained(repo_id)
model = VoxtralForConditionalGeneration.from_pretrained(repo_id, torch_dtype=torch.bfloat16, device_map=device)

conversation = [
    {
        "role": "user",
        "content": [
            {
                "type": "audio",
                "path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/mary_had_lamb.mp3",
            },
            {
                "type": "audio",
                "path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/winning_call.mp3",
            },
            {"type": "text", "text": "What sport and what nursery rhyme are referenced?"},
        ],
    }
]

inputs = processor.apply_chat_template(conversation)
inputs = inputs.to(device, dtype=torch.bfloat16)

outputs = model.generate(**inputs, max_new_tokens=500)
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)

print("\nGenerated response:")
print("=" * 80)
print(decoded_outputs[0])
print("=" * 80)
```
</details>


<details>
  <summary>➡️ multi-turn</summary>

```python
from transformers import VoxtralForConditionalGeneration, AutoProcessor
import torch

device = "cuda"
repo_id = "mistralai/Voxtral-Small-24B-2507"

processor = AutoProcessor.from_pretrained(repo_id)
model = VoxtralForConditionalGeneration.from_pretrained(repo_id, torch_dtype=torch.bfloat16, device_map=device)

conversation = [
    {
        "role": "user",
        "content": [
            {
                "type": "audio",
                "path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/obama.mp3",
            },
            {
                "type": "audio",
                "path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/bcn_weather.mp3",
            },
            {"type": "text", "text": "Describe briefly what you can hear."},
        ],
    },
    {
        "role": "assistant",
        "content": "The audio begins with the speaker delivering a farewell address in Chicago, reflecting on his eight years as president and expressing gratitude to the American people. The audio then transitions to a weather report, stating that it was 35 degrees in Barcelona the previous day, but the temperature would drop to minus 20 degrees the following day.",
    },
    {
        "role": "user",
        "content": [
            {
                "type": "audio",
                "path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/winning_call.mp3",
            },
            {"type": "text", "text": "Ok, now compare this new audio with the previous one."},
        ],
    },
]

inputs = processor.apply_chat_template(conversation)
inputs = inputs.to(device, dtype=torch.bfloat16)

outputs = model.generate(**inputs, max_new_tokens=500)
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)

print("\nGenerated response:")
print("=" * 80)
print(decoded_outputs[0])
print("=" * 80)
```
</details>


<details>
  <summary>➡️ text only</summary>

```python
from transformers import VoxtralForConditionalGeneration, AutoProcessor
import torch

device = "cuda"
repo_id = "mistralai/Voxtral-Small-24B-2507"

processor = AutoProcessor.from_pretrained(repo_id)
model = VoxtralForConditionalGeneration.from_pretrained(repo_id, torch_dtype=torch.bfloat16, device_map=device)

conversation = [
    {
        "role": "user",
        "content": [
            {
                "type": "text",
                "text": "Why should AI models be open-sourced?",
            },
        ],
    }
]

inputs = processor.apply_chat_template(conversation)
inputs = inputs.to(device, dtype=torch.bfloat16)

outputs = model.generate(**inputs, max_new_tokens=500)
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)

print("\nGenerated response:")
print("=" * 80)
print(decoded_outputs[0])
print("=" * 80)
```
</details>


<details>
  <summary>➡️ audio only</summary>

```python
from transformers import VoxtralForConditionalGeneration, AutoProcessor
import torch

device = "cuda"
repo_id = "mistralai/Voxtral-Small-24B-2507"

processor = AutoProcessor.from_pretrained(repo_id)
model = VoxtralForConditionalGeneration.from_pretrained(repo_id, torch_dtype=torch.bfloat16, device_map=device)

conversation = [
    {
        "role": "user",
        "content": [
            {
                "type": "audio",
                "path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/winning_call.mp3",
            },
        ],
    }
]

inputs = processor.apply_chat_template(conversation)
inputs = inputs.to(device, dtype=torch.bfloat16)

outputs = model.generate(**inputs, max_new_tokens=500)
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)

print("\nGenerated response:")
print("=" * 80)
print(decoded_outputs[0])
print("=" * 80)
```
</details>


<details>
  <summary>➡️ batched inference</summary>

```python
from transformers import VoxtralForConditionalGeneration, AutoProcessor
import torch

device = "cuda"
repo_id = "mistralai/Voxtral-Small-24B-2507"

processor = AutoProcessor.from_pretrained(repo_id)
model = VoxtralForConditionalGeneration.from_pretrained(repo_id, torch_dtype=torch.bfloat16, device_map=device)

conversations = [
    [
        {
            "role": "user",
            "content": [
                {
                    "type": "audio",
                    "path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/obama.mp3",
                },
                {
                    "type": "audio",
                    "path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/bcn_weather.mp3",
                },
                {
                    "type": "text",
                    "text": "Who's speaking in the speach and what city's weather is being discussed?",
                },
            ],
        }
    ],
    [
        {
            "role": "user",
            "content": [
                {
                    "type": "audio",
                    "path": "https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/winning_call.mp3",
                },
                {"type": "text", "text": "What can you tell me about this audio?"},
            ],
        }
    ],
]

inputs = processor.apply_chat_template(conversations)
inputs = inputs.to(device, dtype=torch.bfloat16)

outputs = model.generate(**inputs, max_new_tokens=500)
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)

print("\nGenerated responses:")
print("=" * 80)
for decoded_output in decoded_outputs:
    print(decoded_output)
    print("=" * 80)
```
</details>

#### Transcription

<details>
  <summary>➡️ transcribe</summary>

```python
from transformers import VoxtralForConditionalGeneration, AutoProcessor
import torch

device = "cuda"
repo_id = "mistralai/Voxtral-Small-24B-2507"

processor = AutoProcessor.from_pretrained(repo_id)
model = VoxtralForConditionalGeneration.from_pretrained(repo_id, torch_dtype=torch.bfloat16, device_map=device)

inputs = processor.apply_transcription_request(language="en", audio="https://huggingface.co/datasets/hf-internal-testing/dummy-audio-samples/resolve/main/obama.mp3", model_id=repo_id)
inputs = inputs.to(device, dtype=torch.bfloat16)

outputs = model.generate(**inputs, max_new_tokens=500)
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)

print("\nGenerated responses:")
print("=" * 80)
for decoded_output in decoded_outputs:
    print(decoded_output)
    print("=" * 80)
```
</details>