--- library_name: transformers license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - balbus-classifier metrics: - accuracy model-index: - name: miosipof/whisper-small-ft-balbus-sep28k-v1 results: - task: name: Audio Classification type: audio-classification dataset: name: Apple dataset type: balbus-classifier config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.7953596287703016 --- # miosipof/whisper-small-ft-balbus-sep28k-v1 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Apple dataset dataset. It achieves the following results on the evaluation set: - Loss: 0.5668 - Accuracy: 0.7954 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 404 | 0.4751 | 0.7748 | | 0.494 | 2.0 | 808 | 0.4533 | 0.7901 | | 0.3256 | 3.0 | 1212 | 0.5668 | 0.7954 | ### Framework versions - Transformers 4.48.1 - Pytorch 2.2.0 - Datasets 3.2.0 - Tokenizers 0.21.0