Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
---
|
5 |
+
|
6 |
+
# Text Classification GoEmotions
|
7 |
+
|
8 |
+
This model is a fined-tuned version of [nreimers/MiniLMv2-L6-H384-distilled-from-BERT-Large](https://huggingface.co/nreimers/MiniLMv2-L6-H384-distilled-from-BERT-Large) on the on the [Jigsaw 1st Kaggle competition](https://www.kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge) dataset using [unitary/toxic-bert](https://huggingface.co/unitary/toxic-bert) as teacher model.
|
9 |
+
|
10 |
+
# Load the Model
|
11 |
+
|
12 |
+
```py
|
13 |
+
import os
|
14 |
+
import numpy as np
|
15 |
+
import json
|
16 |
+
|
17 |
+
from tokenizers import Tokenizer
|
18 |
+
from onnxruntime import InferenceSession
|
19 |
+
|
20 |
+
|
21 |
+
# !git clone https://huggingface.co/Ngit/MiniLM-L6-toxic-all-labels
|
22 |
+
|
23 |
+
model_name = "Ngit/MiniLM-L6-toxic-all-labels"
|
24 |
+
tokenizer = Tokenizer.from_pretrained(model_name)
|
25 |
+
tokenizer.enable_padding(
|
26 |
+
pad_token="<pad>",
|
27 |
+
pad_id=1,
|
28 |
+
)
|
29 |
+
tokenizer.enable_truncation(max_length=256)
|
30 |
+
batch_size = 16
|
31 |
+
|
32 |
+
texts = ["This is pure trash",]
|
33 |
+
outputs = []
|
34 |
+
model = InferenceSession("MiniLM-L6-toxic-all-labels-onnx/model_optimized.onnx", providers=['CUDAExecutionProvider'])
|
35 |
+
|
36 |
+
with open(os.path.join("MiniLM-L6-toxic-all-labels-onnx", "config.json"), "r") as f:
|
37 |
+
config = json.load(f)
|
38 |
+
|
39 |
+
output_names = [output.name for output in model.get_outputs()]
|
40 |
+
input_names = [input.name for input in model.get_inputs()]
|
41 |
+
|
42 |
+
for subtexts in np.array_split(np.array(texts), len(texts) // batch_size + 1):
|
43 |
+
encodings = tokenizer.encode_batch(list(subtexts))
|
44 |
+
inputs = {
|
45 |
+
"input_ids": np.vstack(
|
46 |
+
[encoding.ids for encoding in encodings], dtype=np.int64
|
47 |
+
),
|
48 |
+
"attention_mask": np.vstack(
|
49 |
+
[encoding.attention_mask for encoding in encodings], dtype=np.int64
|
50 |
+
),
|
51 |
+
"token_type_ids": np.vstack(
|
52 |
+
[encoding.type_ids for encoding in encodings], dtype=np.int64
|
53 |
+
),
|
54 |
+
}
|
55 |
+
|
56 |
+
for input_name in input_names:
|
57 |
+
if input_name not in inputs:
|
58 |
+
raise ValueError(f"Input name {input_name} not found in inputs")
|
59 |
+
|
60 |
+
inputs = {input_name: inputs[input_name] for input_name in input_names}
|
61 |
+
output = np.squeeze(
|
62 |
+
np.stack(
|
63 |
+
model.run(output_names=output_names, input_feed=inputs)
|
64 |
+
),
|
65 |
+
axis=0,
|
66 |
+
)
|
67 |
+
outputs.append(output)
|
68 |
+
|
69 |
+
outputs = np.concatenate(outputs, axis=0)
|
70 |
+
scores = 1 / (1 + np.exp(-outputs))
|
71 |
+
results = []
|
72 |
+
for item in scores:
|
73 |
+
labels = []
|
74 |
+
scores = []
|
75 |
+
for idx, s in enumerate(item):
|
76 |
+
labels.append(config["id2label"][str(idx)])
|
77 |
+
scores.append(float(s))
|
78 |
+
results.append({"labels": labels, "scores": scores})
|
79 |
+
|
80 |
+
results
|
81 |
+
```
|
82 |
+
|
83 |
+
# Training hyperparameters
|
84 |
+
|
85 |
+
The following hyperparameters were used during training:
|
86 |
+
- learning_rate: 6e-05
|
87 |
+
- train_batch_size: 48
|
88 |
+
- eval_batch_size: 48
|
89 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
90 |
+
- lr_scheduler_type: linear
|
91 |
+
- num_epochs: 10
|
92 |
+
- warmup_ratio: 0.1
|
93 |
+
|
94 |
+
|
95 |
+
# Metrics (comparison with teacher model)
|
96 |
+
|
97 |
+
| Teacher (params) | Student (params) | Set (metric) | Score (teacher) | Score (student) |
|
98 |
+
|--------------------|-------------|----------|--------| --------|
|
99 |
+
| unitary/toxic-bert (110M) | MiniLMv2-L6-H384-goemotions-v2-onnx (23M) | Test (ROC_AUC) | 0.98636 | 0.98600 |
|
100 |
+
|
101 |
+
# Training Code, Evaluation & Deployment
|
102 |
+
|
103 |
+
Check
|
104 |
+
|