mini1013 commited on
Commit
c67f7d0
·
verified ·
1 Parent(s): 6c4a575

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,285 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - setfit
4
+ - sentence-transformers
5
+ - text-classification
6
+ - generated_from_setfit_trainer
7
+ widget:
8
+ - text: 자클라이 웨스트바이킹 쿨 바라클라바 넥워머 여름 자외선차단 LF1360 스포츠/레저>스포츠액세서리>스포츠넥워머
9
+ - text: 등산 자전거 바이크 멀티 스카프 스포츠/레저>스포츠액세서리>아이스머플러/스카프
10
+ - text: 축구작전판 축구전술판 스코어보드 팀명로고인쇄 스포츠/레저>스포츠액세서리>스코어보드/작전판
11
+ - text: 등산 낚시 동계 필수 아웃도어 전체 기모 방한 마스크 스포츠/레저>스포츠액세서리>스포츠마스크
12
+ - text: 전자점수판 농구전광판 디지털점수판 세자리 배드민턴 N2 스포츠/레저>스포츠액세서리>스코어보드/작전판
13
+ metrics:
14
+ - accuracy
15
+ pipeline_tag: text-classification
16
+ library_name: setfit
17
+ inference: true
18
+ base_model: mini1013/master_domain
19
+ model-index:
20
+ - name: SetFit with mini1013/master_domain
21
+ results:
22
+ - task:
23
+ type: text-classification
24
+ name: Text Classification
25
+ dataset:
26
+ name: Unknown
27
+ type: unknown
28
+ split: test
29
+ metrics:
30
+ - type: accuracy
31
+ value: 0.9989235737351991
32
+ name: Accuracy
33
+ ---
34
+
35
+ # SetFit with mini1013/master_domain
36
+
37
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
38
+
39
+ The model has been trained using an efficient few-shot learning technique that involves:
40
+
41
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
49
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
50
+ - **Maximum Sequence Length:** 512 tokens
51
+ - **Number of Classes:** 9 classes
52
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
+
62
+ ### Model Labels
63
+ | Label | Examples |
64
+ |:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
65
+ | 1.0 | <ul><li>'고급형 ABS PP 점수판 가방포함 5세트 30점 중형 44x24 체육용 스포츠/레저>스포츠액세서리>스코어보드/작전판'</li><li>'폭스40 클립보드작전판 6920 스포츠/레저>스포츠액세서리>스코어보드/작전판'</li><li>'축구작전판 풋살작전판 전술보드 지휘판 축구판 s224 2027A E13WCB087EM 스포츠/레저>스포츠액세서리>스코어보드/작전판'</li></ul> |
66
+ | 8.0 | <ul><li>'아이워너 범블비 전자호각 호루라기 KS-848 스포츠/레저>스포츠액세서리>호각/호루라기'</li><li>'프로맥스 스포츠호각-그린 스포츠/레저>스포츠액세서리>호각/호루라기'</li><li>'Star 호각 플라스틱 스포츠/레저>스포츠액세서리>호각/호루라기'</li></ul> |
67
+ | 6.0 | <ul><li>'런웨이브 스포츠 헤어밴드 1p 땀흡수 머리고정 운동 스포츠/레저>스포츠액세서리>스포츠헤어밴드'</li><li>'미즈노 스트레치 헤어밴드 33YZ210305 스포츠/레저>스포츠액세서리>스포츠헤어밴드'</li><li>'피엘라벤 아비스코 울 헤드밴드 F235UCA09AC 스포츠/레저>스포츠액세서리>스포츠헤어밴드'</li></ul> |
68
+ | 7.0 | <ul><li>'배달 등산 트래킹 UV차단 멀티스카프 여름목토시 아이스목도리 자전거마스크 쿨넥 스포츠/레저>스포츠액세서리>아이스머플러/스카프'</li><li>'자외선 통기성 귀걸이형 메쉬 스카��� 등산용마스크 등산스카프 스포츠/레저>스포츠액세서리>아이스머플러/스카프'</li><li>'해밀 4 1 국산 쿨스카프 넥쿨러 냉감 스포츠 아이스 머플러 자외선차단 여름 넥워머 등산 스포츠/레저>스포츠액세서리>아이스머플러/스카프'</li></ul> |
69
+ | 5.0 | <ul><li>'내셔널지오그래픽 아이스 슬리브 N232AGL510 WHITE151842 스포츠/레저>스포츠액세서리>스포츠토시'</li><li>'여름 골프 쿨토시 UV 자외선차단 아이스 팔토시 남성 여성 암슬리브 등산 자전거 운전 손등토시 스포츠/레저>스포츠액세서리>스포츠토시'</li><li>'팔토시 여름 등산 토시 스포츠/레저>스포츠액세서리>스포츠토시'</li></ul> |
70
+ | 3.0 | <ul><li>'야팩 자외선차단 골프마스크 얼굴햇빛가리개 등산 자전거 스포츠 아웃도어 마스크팩 1BOX 4매 스포츠/레저>스포츠액세서리>스포츠마스크'</li><li>'블랙야크 남여공용 여름 다용도 UV차단마스크 UV차양마스크 2BYXXX3912 597799 스포츠/레저>스포츠액세서리>스포츠마스크'</li><li>'유투스포츠 1 1 MS1 스탠다드 익스트림 마스크 자외선차단 골프 자전거 스포츠 등산 낚시 산책 스포츠/레저>스포츠액세서리>스포츠마스크'</li></ul> |
71
+ | 4.0 | <ul><li>'바너 스포츠 고글 선글라스 자전거 미러 변색 안경 스포츠/레저>스포츠액세서리>스포츠선글라스'</li><li>'BRIKO CYCLOPE 썬글라스 904 스포츠/레저>스포츠액세서리>스포츠선글라스'</li><li>'WTD 스템 변색 미러 렌즈 선글라스 스포츠/레저>스포츠액세서리>스포츠선글라스'</li></ul> |
72
+ | 0.0 | <ul><li>'체육관 공 정리함 수납함 철제 보관 바구니 학교 카트 스포츠/레저>스포츠액세서리>볼캐리어'</li><li>'농구 공 보관 랙 3 단 큐브 거치대 차고 스포츠 정리함 실내 탈착식 수직 디스플레이 스탠드 스포츠/레저>스포츠액세서리>볼캐리어'</li><li>'농구공보관함 체육관 학교 공 이동식 수납 정리대-모델굵은글씨화이트140x35x140 5레이어544 5457게이 스포츠/레저>스포츠액세서리>볼캐리어'</li></ul> |
73
+ | 2.0 | <ul><li>'아크테릭스 23FW 로 라이트웨이트 울 바라클라바 BLK RHO 라이트 WEIGHT BALACLAVA M 95 정도이니 참조 AENFUX5968 스포츠/레저>스포츠액세서리>스포츠넥워머'</li><li>'블랙 바라클라바 자외선차단마스크 여름넥워머 스포츠/레저>스포츠액세서리>스포츠넥워머'</li><li>'NATIONALGEOGRAPHIC 넥게이터 N232AAC510 스포츠/레저>스포츠액세서리>스포츠넥워머'</li></ul> |
74
+
75
+ ## Evaluation
76
+
77
+ ### Metrics
78
+ | Label | Accuracy |
79
+ |:--------|:---------|
80
+ | **all** | 0.9989 |
81
+
82
+ ## Uses
83
+
84
+ ### Direct Use for Inference
85
+
86
+ First install the SetFit library:
87
+
88
+ ```bash
89
+ pip install setfit
90
+ ```
91
+
92
+ Then you can load this model and run inference.
93
+
94
+ ```python
95
+ from setfit import SetFitModel
96
+
97
+ # Download from the 🤗 Hub
98
+ model = SetFitModel.from_pretrained("mini1013/master_cate_sl21")
99
+ # Run inference
100
+ preds = model("등산 자전거 바이크 멀티 스카프 스포츠/레저>스포츠액세서리>아이스머플러/스카프")
101
+ ```
102
+
103
+ <!--
104
+ ### Downstream Use
105
+
106
+ *List how someone could finetune this model on their own dataset.*
107
+ -->
108
+
109
+ <!--
110
+ ### Out-of-Scope Use
111
+
112
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
113
+ -->
114
+
115
+ <!--
116
+ ## Bias, Risks and Limitations
117
+
118
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
119
+ -->
120
+
121
+ <!--
122
+ ### Recommendations
123
+
124
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
125
+ -->
126
+
127
+ ## Training Details
128
+
129
+ ### Training Set Metrics
130
+ | Training set | Min | Median | Max |
131
+ |:-------------|:----|:-------|:----|
132
+ | Word count | 3 | 8.4524 | 21 |
133
+
134
+ | Label | Training Sample Count |
135
+ |:------|:----------------------|
136
+ | 0.0 | 70 |
137
+ | 1.0 | 70 |
138
+ | 2.0 | 70 |
139
+ | 3.0 | 70 |
140
+ | 4.0 | 70 |
141
+ | 5.0 | 70 |
142
+ | 6.0 | 70 |
143
+ | 7.0 | 70 |
144
+ | 8.0 | 70 |
145
+
146
+ ### Training Hyperparameters
147
+ - batch_size: (256, 256)
148
+ - num_epochs: (30, 30)
149
+ - max_steps: -1
150
+ - sampling_strategy: oversampling
151
+ - num_iterations: 50
152
+ - body_learning_rate: (2e-05, 1e-05)
153
+ - head_learning_rate: 0.01
154
+ - loss: CosineSimilarityLoss
155
+ - distance_metric: cosine_distance
156
+ - margin: 0.25
157
+ - end_to_end: False
158
+ - use_amp: False
159
+ - warmup_proportion: 0.1
160
+ - l2_weight: 0.01
161
+ - seed: 42
162
+ - eval_max_steps: -1
163
+ - load_best_model_at_end: False
164
+
165
+ ### Training Results
166
+ | Epoch | Step | Training Loss | Validation Loss |
167
+ |:-------:|:----:|:-------------:|:---------------:|
168
+ | 0.0081 | 1 | 0.5163 | - |
169
+ | 0.4032 | 50 | 0.4971 | - |
170
+ | 0.8065 | 100 | 0.3704 | - |
171
+ | 1.2097 | 150 | 0.1312 | - |
172
+ | 1.6129 | 200 | 0.0318 | - |
173
+ | 2.0161 | 250 | 0.0173 | - |
174
+ | 2.4194 | 300 | 0.0096 | - |
175
+ | 2.8226 | 350 | 0.0001 | - |
176
+ | 3.2258 | 400 | 0.0001 | - |
177
+ | 3.6290 | 450 | 0.0001 | - |
178
+ | 4.0323 | 500 | 0.0 | - |
179
+ | 4.4355 | 550 | 0.0 | - |
180
+ | 4.8387 | 600 | 0.0 | - |
181
+ | 5.2419 | 650 | 0.0 | - |
182
+ | 5.6452 | 700 | 0.0 | - |
183
+ | 6.0484 | 750 | 0.0 | - |
184
+ | 6.4516 | 800 | 0.0 | - |
185
+ | 6.8548 | 850 | 0.0 | - |
186
+ | 7.2581 | 900 | 0.0 | - |
187
+ | 7.6613 | 950 | 0.0 | - |
188
+ | 8.0645 | 1000 | 0.0 | - |
189
+ | 8.4677 | 1050 | 0.0 | - |
190
+ | 8.8710 | 1100 | 0.0 | - |
191
+ | 9.2742 | 1150 | 0.0 | - |
192
+ | 9.6774 | 1200 | 0.0 | - |
193
+ | 10.0806 | 1250 | 0.0 | - |
194
+ | 10.4839 | 1300 | 0.0 | - |
195
+ | 10.8871 | 1350 | 0.0 | - |
196
+ | 11.2903 | 1400 | 0.0 | - |
197
+ | 11.6935 | 1450 | 0.0 | - |
198
+ | 12.0968 | 1500 | 0.0 | - |
199
+ | 12.5 | 1550 | 0.0 | - |
200
+ | 12.9032 | 1600 | 0.0 | - |
201
+ | 13.3065 | 1650 | 0.0 | - |
202
+ | 13.7097 | 1700 | 0.0 | - |
203
+ | 14.1129 | 1750 | 0.0 | - |
204
+ | 14.5161 | 1800 | 0.0 | - |
205
+ | 14.9194 | 1850 | 0.0 | - |
206
+ | 15.3226 | 1900 | 0.0 | - |
207
+ | 15.7258 | 1950 | 0.0 | - |
208
+ | 16.1290 | 2000 | 0.0 | - |
209
+ | 16.5323 | 2050 | 0.0 | - |
210
+ | 16.9355 | 2100 | 0.0 | - |
211
+ | 17.3387 | 2150 | 0.0 | - |
212
+ | 17.7419 | 2200 | 0.0 | - |
213
+ | 18.1452 | 2250 | 0.0 | - |
214
+ | 18.5484 | 2300 | 0.0 | - |
215
+ | 18.9516 | 2350 | 0.0 | - |
216
+ | 19.3548 | 2400 | 0.0 | - |
217
+ | 19.7581 | 2450 | 0.0 | - |
218
+ | 20.1613 | 2500 | 0.0 | - |
219
+ | 20.5645 | 2550 | 0.0 | - |
220
+ | 20.9677 | 2600 | 0.0 | - |
221
+ | 21.3710 | 2650 | 0.0 | - |
222
+ | 21.7742 | 2700 | 0.0 | - |
223
+ | 22.1774 | 2750 | 0.0 | - |
224
+ | 22.5806 | 2800 | 0.0 | - |
225
+ | 22.9839 | 2850 | 0.0 | - |
226
+ | 23.3871 | 2900 | 0.0 | - |
227
+ | 23.7903 | 2950 | 0.0 | - |
228
+ | 24.1935 | 3000 | 0.0 | - |
229
+ | 24.5968 | 3050 | 0.0 | - |
230
+ | 25.0 | 3100 | 0.0 | - |
231
+ | 25.4032 | 3150 | 0.0 | - |
232
+ | 25.8065 | 3200 | 0.0 | - |
233
+ | 26.2097 | 3250 | 0.0 | - |
234
+ | 26.6129 | 3300 | 0.0 | - |
235
+ | 27.0161 | 3350 | 0.0 | - |
236
+ | 27.4194 | 3400 | 0.0 | - |
237
+ | 27.8226 | 3450 | 0.0 | - |
238
+ | 28.2258 | 3500 | 0.0 | - |
239
+ | 28.6290 | 3550 | 0.0 | - |
240
+ | 29.0323 | 3600 | 0.0 | - |
241
+ | 29.4355 | 3650 | 0.0 | - |
242
+ | 29.8387 | 3700 | 0.0 | - |
243
+
244
+ ### Framework Versions
245
+ - Python: 3.10.12
246
+ - SetFit: 1.1.0
247
+ - Sentence Transformers: 3.3.1
248
+ - Transformers: 4.44.2
249
+ - PyTorch: 2.2.0a0+81ea7a4
250
+ - Datasets: 3.2.0
251
+ - Tokenizers: 0.19.1
252
+
253
+ ## Citation
254
+
255
+ ### BibTeX
256
+ ```bibtex
257
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
258
+ doi = {10.48550/ARXIV.2209.11055},
259
+ url = {https://arxiv.org/abs/2209.11055},
260
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
261
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
262
+ title = {Efficient Few-Shot Learning Without Prompts},
263
+ publisher = {arXiv},
264
+ year = {2022},
265
+ copyright = {Creative Commons Attribution 4.0 International}
266
+ }
267
+ ```
268
+
269
+ <!--
270
+ ## Glossary
271
+
272
+ *Clearly define terms in order to be accessible across audiences.*
273
+ -->
274
+
275
+ <!--
276
+ ## Model Card Authors
277
+
278
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
279
+ -->
280
+
281
+ <!--
282
+ ## Model Card Contact
283
+
284
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
285
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_item_sl_org_gtcate",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.44.2",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.2.0a0+81ea7a4"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5611dc52b1b183f807a019abdf189ee92f5379868e6910e40433335855f6c1ea
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4dd4d3b3fd6a0e81a155d8cae4d600d32bfcd62add3f5513acac9fff1ec86d59
3
+ size 56255
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff