File size: 10,817 Bytes
6515d04
 
 
 
 
 
 
 
 
 
 
 
685c2df
 
 
 
 
 
6515d04
 
 
 
 
 
 
 
 
 
 
 
 
685c2df
6515d04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
685c2df
 
 
 
 
 
 
 
 
 
6515d04
 
 
 
 
 
685c2df
6515d04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
685c2df
6515d04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
685c2df
6515d04
 
d32f7fe
6515d04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
685c2df
 
 
 
 
d32f7fe
685c2df
 
d32f7fe
 
 
685c2df
 
 
 
 
 
 
 
6515d04
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 이브로쉐 모링가 리프레시 헤어 식초 400ml 1 옵션없음 주식회사 다올연구소
- text: Hair Identifier Spray for Face Shaving 2024 Skin Dermaplaning Moisturizing
    and Care Dermaplaner 2 PC 옵션없음 젠틀스토어
- text: 수앤 오리진 블랙 단백질샴푸700ml,4개 옵션없음 다부자
- text: 클로란 퀴닌 에델바이스 두피 세럼 100ml 옵션없음 스루치로 유한책임회사
- text: 이브로쉐 리프레쉬 헤어식초(모링가) 400ml 옵션없음 스루치로 유한책임회사
inference: true
model-index:
- name: SetFit with mini1013/master_domain
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 0.6042402826855123
      name: Accuracy
---

# SetFit with mini1013/master_domain

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 8 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                                                            |
|:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6.0   | <ul><li>'CHI 실크 인퓨전 12 Fl oz (관부가세포함) 옵션없음 제이글로벌컴퍼니'</li><li>'아모스 리페어 샤인 모이스트 에센스 100ml 옵션없음 티비'</li><li>'BAO H LAB Hair Loss Care Ampoule 바오에이치랩 탈모케어앰플 옵션없음 주식회사 바오젠'</li></ul>                                                   |
| 7.0   | <ul><li>'커리쉴 프레스티지 실키 3종 옵션없음 (주)커리쉴'</li><li>'미쟝센 퍼펙트 매직 스트레이트 샴푸&트리트먼트&세럼 3종 세트+트리트먼트 30ml 아모레퍼시픽'</li><li>'[르도암 공식]르도암 카멜리아 헤어 2종 세트(샴푸+트리트먼트) LEDOAM1935'</li></ul>                                                             |
| 0.0   | <ul><li>'실키드 검은콩 코팅 탈모펜슬™ / 머리숱앰플 두피앰플 산후탈모 서리태 비건 에센스 홈 1개 (1개월) 탈모펜슬™ 주식회사 팀오브라만차(Team of la mancha Corp.)'</li><li>'에버미라클 200ml EM 풀라무 토너 스칼프 토닉 8W98E7F225 옵션없음 파워몰'</li><li>'포티샤 모발강화 두피세럼 100ml/르네휘테르 옵션없음 롯데쇼핑(주)'</li></ul> |
| 4.0   | <ul><li>'[클렌징대전(클렌징밤 )] 로픈 바오밥 세라마이드LPP 프리미엄 헤어트리트먼트 베이비파우더향 1000g 옵션없음 (주)우신뷰티'</li><li>'허벌리스테 헤어 리페어세럼 150ml 1개 + 헤어 마스크 500ml - 1개 옵션없음 복슬강아지'</li><li>'[백화점 정품] 모로칸오일 오리지널 오일 트리트먼트 100ml 제3자 배송관련 개인정보활용에 동의함 버니버즈'</li></ul>  |
| 2.0   | <ul><li>'헤드앤숄더 시트러스 레몬 샴푸 750ml 옵션없음 포에이치제이'</li><li>'아렌 일진 산성샴푸펌컬러 1000ml 옵션없음 해문인터내셔널'</li><li>'물없이쓰는샴푸 물없이머리감는 입원준비물 노워시 옵션없음 해피2데이'</li></ul>                                                                                   |
| 5.0   | <ul><li>'바이오테닉스 홈케어 매직헬프 바이-페이즈 리컨디셔너 60ml 비너스 클리닉 옵션없음 주식회사 위즈온컴퍼니'</li><li>'[바이레도] 블랑쉬 헤어퍼퓸 75ml 화이트_F 푸치코리아 유한책임회사'</li><li>'바이레도 집시 워터 헤어퍼퓸 75ml 백화점 상품 옵션없음 코코스팜'</li></ul>                                                    |
| 1.0   | <ul><li>'케라시스린스 퍼퓸 체리블라썸 1000ml 옵션없음 땡그리나'</li><li>'[갤러리아] [비건 NEW] 진저 스캘프 케어 대용량 컨디셔너 400ML(한화갤러리아㈜ 광교점) 옵션없음 한화갤러리아(주)'</li><li>'케라시스 스위트 앤 플라워리 퍼퓸 린스 1L 옵션없음 해피쭈몰'</li></ul>                                                    |
| 3.0   | <ul><li>'모비88 아데노신 특허등록 탈모토닉 볼륨업 비듬 제거 옵션없음 달이커머스'</li><li>'힐텀 어성초 맥주효모 토닉 120ml 옵션없음 현스 마켓'</li><li>'닥터포헤어 폴리젠 토닉 120ml x 2개 두피 영양공급 탈모증상완화 영양제 코스트코 옵션없음 또또상회'</li></ul>                                                          |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 0.6042   |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_bt12_test")
# Run inference
preds = model("수앤 오리진 블랙 단백질샴푸700ml,4개 옵션없음 다부자")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count   | 4   | 9.25   | 21  |

| Label | Training Sample Count |
|:------|:----------------------|
| 0.0   | 12                    |
| 1.0   | 23                    |
| 2.0   | 19                    |
| 3.0   | 14                    |
| 4.0   | 18                    |
| 5.0   | 20                    |
| 6.0   | 28                    |
| 7.0   | 18                    |

### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (50, 50)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 60
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch   | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0556  | 1    | 0.4865        | -               |
| 2.7778  | 50   | 0.3392        | -               |
| 5.5556  | 100  | 0.0584        | -               |
| 8.3333  | 150  | 0.0087        | -               |
| 11.1111 | 200  | 0.003         | -               |
| 13.8889 | 250  | 0.0002        | -               |
| 16.6667 | 300  | 0.0001        | -               |
| 19.4444 | 350  | 0.0001        | -               |
| 22.2222 | 400  | 0.0001        | -               |
| 25.0    | 450  | 0.0001        | -               |
| 27.7778 | 500  | 0.0001        | -               |
| 30.5556 | 550  | 0.0           | -               |
| 33.3333 | 600  | 0.0           | -               |
| 36.1111 | 650  | 0.0           | -               |
| 38.8889 | 700  | 0.0           | -               |
| 41.6667 | 750  | 0.0           | -               |
| 44.4444 | 800  | 0.0           | -               |
| 47.2222 | 850  | 0.0           | -               |
| 50.0    | 900  | 0.0           | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->