--- tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: 하이라이크 유모차장갑 핸드머프 방한장갑 블랙체스 출산/육아 > 유모차 > 유모차용품 > 기타유모차용품 - text: 대통 K-Express 대문 출입문 게이트 스텐 펜스 접이식 정문 자바라 절연 텔레스코픽 튜브 울타리 전기 안전 건설 이동식 난간 유치원 격리 AB.플라스틱 0.96 높이X2.5 긴 빨간색 출산/육아 > 유모차 > 유모차용품 > 유모차보호대/안전바 - text: HABBY 휴대용/절충형/디럭스 유모차 누빔 방한커버 방풍커버 04.하삐 휴대용 방한커버 출산/육아 > 유모차 > 유모차용품 > 유모차커버 - text: 올겟쇼핑 나이스 유모차 컵홀더 스마트폰거치대 출산/육아 > 유모차 > 유모차용품 > 유모차홀더 - text: NEW 오이스터3 플러스 유모차 클래식 에디션 브라운 샌드 베이지 디럭스 절충형 8종선물 오이스터3 플러스 에디션_플러스 샴페인샌드(8종선물) 출산/육아 > 유모차 > 절충형/디럭스형 metrics: - accuracy pipeline_tag: text-classification library_name: setfit inference: true base_model: mini1013/master_domain model-index: - name: SetFit with mini1013/master_domain results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 1.0 name: Accuracy --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 5 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 4.0 | | | 2.0 | | | 3.0 | | | 0.0 | | | 1.0 | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 1.0 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("mini1013/master_cate_bc16") # Run inference preds = model("올겟쇼핑 나이스 유모차 컵홀더 스마트폰거치대 출산/육아 > 유모차 > 유모차용품 > 유모차홀더") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 7 | 16.2771 | 32 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 70 | | 1.0 | 70 | | 2.0 | 70 | | 3.0 | 70 | | 4.0 | 70 | ### Training Hyperparameters - batch_size: (256, 256) - num_epochs: (30, 30) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 50 - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0145 | 1 | 0.4827 | - | | 0.7246 | 50 | 0.4996 | - | | 1.4493 | 100 | 0.4912 | - | | 2.1739 | 150 | 0.2633 | - | | 2.8986 | 200 | 0.0252 | - | | 3.6232 | 250 | 0.0001 | - | | 4.3478 | 300 | 0.0 | - | | 5.0725 | 350 | 0.0 | - | | 5.7971 | 400 | 0.0 | - | | 6.5217 | 450 | 0.0 | - | | 7.2464 | 500 | 0.0 | - | | 7.9710 | 550 | 0.0 | - | | 8.6957 | 600 | 0.0 | - | | 9.4203 | 650 | 0.0 | - | | 10.1449 | 700 | 0.0 | - | | 10.8696 | 750 | 0.0 | - | | 11.5942 | 800 | 0.0 | - | | 12.3188 | 850 | 0.0 | - | | 13.0435 | 900 | 0.0 | - | | 13.7681 | 950 | 0.0 | - | | 14.4928 | 1000 | 0.0 | - | | 15.2174 | 1050 | 0.0 | - | | 15.9420 | 1100 | 0.0 | - | | 16.6667 | 1150 | 0.0 | - | | 17.3913 | 1200 | 0.0 | - | | 18.1159 | 1250 | 0.0 | - | | 18.8406 | 1300 | 0.0 | - | | 19.5652 | 1350 | 0.0 | - | | 20.2899 | 1400 | 0.0 | - | | 21.0145 | 1450 | 0.0 | - | | 21.7391 | 1500 | 0.0 | - | | 22.4638 | 1550 | 0.0 | - | | 23.1884 | 1600 | 0.0 | - | | 23.9130 | 1650 | 0.0 | - | | 24.6377 | 1700 | 0.0 | - | | 25.3623 | 1750 | 0.0 | - | | 26.0870 | 1800 | 0.0 | - | | 26.8116 | 1850 | 0.0 | - | | 27.5362 | 1900 | 0.0 | - | | 28.2609 | 1950 | 0.0 | - | | 28.9855 | 2000 | 0.0 | - | | 29.7101 | 2050 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0 - Sentence Transformers: 3.3.1 - Transformers: 4.44.2 - PyTorch: 2.2.0a0+81ea7a4 - Datasets: 3.2.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```