--- tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: 빨수있는 헝겊 공구가방 남자 아기 출산선물 육아템 캠핑장난감 유아놀이 장남감 1개 출산/육아 > 완구/인형 > 역할놀이/소꿉놀이 - text: 꼬마실로폰 완구 원목블록 출산 매트 육아 출산/육아 > 완구/인형 > 음악/악기놀이 - text: 아이링고 뉴 스타터세트 212pcs 블럭장난감 유치원교구 출산/육아 > 완구/인형 > 블록 - text: 쿠쿠토이즈 코코몽 모래놀이 완구 출산 육아 매트 출산/육아 > 완구/인형 > 역할놀이/소꿉놀이 - text: 유아용품 레드박스 뉴 주방놀이세트 완구 육아 출산 매트 출산/육아 > 완구/인형 > 역할놀이/소꿉놀이 metrics: - accuracy pipeline_tag: text-classification library_name: setfit inference: true base_model: mini1013/master_domain --- # SetFit with mini1013/master_domain This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 18 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 17.0 | | | 7.0 | | | 13.0 | | | 0.0 | | | 12.0 | | | 16.0 | | | 14.0 | | | 2.0 | | | 3.0 | | | 6.0 | | | 4.0 | | | 9.0 | | | 5.0 | | | 11.0 | | | 8.0 | | | 15.0 | | | 1.0 | | | 10.0 | | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("mini1013/master_cate_bc13") # Run inference preds = model("꼬마실로폰 완구 원목블록 출산 매트 육아 출산/육아 > 완구/인형 > 음악/악기놀이") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 7 | 14.3937 | 25 | | Label | Training Sample Count | |:------|:----------------------| | 0.0 | 20 | | 1.0 | 20 | | 2.0 | 20 | | 3.0 | 20 | | 4.0 | 20 | | 5.0 | 20 | | 6.0 | 8 | | 7.0 | 20 | | 8.0 | 20 | | 9.0 | 20 | | 10.0 | 20 | | 11.0 | 20 | | 12.0 | 20 | | 13.0 | 20 | | 14.0 | 20 | | 15.0 | 20 | | 16.0 | 20 | | 17.0 | 20 | ### Training Hyperparameters - batch_size: (256, 256) - num_epochs: (30, 30) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 50 - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-------:|:----:|:-------------:|:---------------:| | 0.0147 | 1 | 0.4769 | - | | 0.7353 | 50 | 0.4673 | - | | 1.4706 | 100 | 0.1769 | - | | 2.2059 | 150 | 0.0467 | - | | 2.9412 | 200 | 0.012 | - | | 3.6765 | 250 | 0.0068 | - | | 4.4118 | 300 | 0.0067 | - | | 5.1471 | 350 | 0.0043 | - | | 5.8824 | 400 | 0.0022 | - | | 6.6176 | 450 | 0.0001 | - | | 7.3529 | 500 | 0.0001 | - | | 8.0882 | 550 | 0.0001 | - | | 8.8235 | 600 | 0.0001 | - | | 9.5588 | 650 | 0.0001 | - | | 10.2941 | 700 | 0.0001 | - | | 11.0294 | 750 | 0.0001 | - | | 11.7647 | 800 | 0.0 | - | | 12.5 | 850 | 0.0 | - | | 13.2353 | 900 | 0.0 | - | | 13.9706 | 950 | 0.0 | - | | 14.7059 | 1000 | 0.0 | - | | 15.4412 | 1050 | 0.0 | - | | 16.1765 | 1100 | 0.0 | - | | 16.9118 | 1150 | 0.0 | - | | 17.6471 | 1200 | 0.0 | - | | 18.3824 | 1250 | 0.0 | - | | 19.1176 | 1300 | 0.0 | - | | 19.8529 | 1350 | 0.0 | - | | 20.5882 | 1400 | 0.0 | - | | 21.3235 | 1450 | 0.0 | - | | 22.0588 | 1500 | 0.0 | - | | 22.7941 | 1550 | 0.0 | - | | 23.5294 | 1600 | 0.0 | - | | 24.2647 | 1650 | 0.0 | - | | 25.0 | 1700 | 0.0 | - | | 25.7353 | 1750 | 0.0 | - | | 26.4706 | 1800 | 0.0 | - | | 27.2059 | 1850 | 0.0 | - | | 27.9412 | 1900 | 0.0 | - | | 28.6765 | 1950 | 0.0 | - | | 29.4118 | 2000 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.1.0 - Sentence Transformers: 3.3.1 - Transformers: 4.44.2 - PyTorch: 2.2.0a0+81ea7a4 - Datasets: 3.2.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```