Create handler.py
Browse files- handler.py +98 -0
handler.py
ADDED
|
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Dict, List, Any
|
| 2 |
+
from transformers import pipeline, AutoConfig, AutoModelForCausalLM, AutoTokenizer, AutoModelForSequenceClassification
|
| 3 |
+
from sentence_transformers import SentenceTransformer
|
| 4 |
+
import torch
|
| 5 |
+
import os
|
| 6 |
+
import logging
|
| 7 |
+
|
| 8 |
+
logging.basicConfig(level=logging.INFO)
|
| 9 |
+
logger = logging.getLogger(__name__)
|
| 10 |
+
|
| 11 |
+
class EndpointHandler:
|
| 12 |
+
def __init__(self, path=""):
|
| 13 |
+
self.path = path
|
| 14 |
+
try:
|
| 15 |
+
self.task = self._determine_task()
|
| 16 |
+
except Exception as e:
|
| 17 |
+
logger.error(f"Failed to determine task: {str(e)}")
|
| 18 |
+
raise
|
| 19 |
+
|
| 20 |
+
logger.info(f"Initializing model for task: {self.task} at path: {path}")
|
| 21 |
+
if self.task == "text-generation":
|
| 22 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
| 23 |
+
path,
|
| 24 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
| 25 |
+
)
|
| 26 |
+
self.tokenizer = AutoTokenizer.from_pretrained(path)
|
| 27 |
+
self.pipeline = pipeline(
|
| 28 |
+
"text-generation",
|
| 29 |
+
model=self.model,
|
| 30 |
+
tokenizer=self.tokenizer,
|
| 31 |
+
device=0 if torch.cuda.is_available() else -1
|
| 32 |
+
)
|
| 33 |
+
elif self.task == "text-classification":
|
| 34 |
+
self.model = AutoModelForSequenceClassification.from_pretrained(
|
| 35 |
+
path,
|
| 36 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
| 37 |
+
)
|
| 38 |
+
self.tokenizer = AutoTokenizer.from_pretrained(path)
|
| 39 |
+
self.pipeline = pipeline(
|
| 40 |
+
"text-classification",
|
| 41 |
+
model=self.model,
|
| 42 |
+
tokenizer=self.tokenizer,
|
| 43 |
+
device=0 if torch.cuda.is_available() else -1
|
| 44 |
+
)
|
| 45 |
+
elif self.task == "sentence-embedding":
|
| 46 |
+
self.model = SentenceTransformer(path)
|
| 47 |
+
else:
|
| 48 |
+
raise ValueError(f"Unsupported task: {self.task} for model at {path}")
|
| 49 |
+
|
| 50 |
+
def _determine_task(self):
|
| 51 |
+
config_path = os.path.join(self.path, "config.json")
|
| 52 |
+
if not os.path.exists(config_path):
|
| 53 |
+
logger.error(f"config.json not found in {self.path}")
|
| 54 |
+
raise ValueError(f"config.json not found in {self.path}")
|
| 55 |
+
|
| 56 |
+
try:
|
| 57 |
+
config = AutoConfig.from_pretrained(self.path)
|
| 58 |
+
model_type = config.model_type if hasattr(config, "model_type") else None
|
| 59 |
+
except Exception as e:
|
| 60 |
+
logger.error(f"Failed to load config: {str(e)}")
|
| 61 |
+
raise ValueError(f"Invalid config.json in {self.path}: {str(e)}")
|
| 62 |
+
|
| 63 |
+
text_generation_types = ["gpt2"]
|
| 64 |
+
text_classification_types = ["bert", "distilbert", "roberta"]
|
| 65 |
+
embedding_types = ["bert"]
|
| 66 |
+
|
| 67 |
+
model_name = self.path.split("/")[-1].lower()
|
| 68 |
+
logger.info(f"Model name: {model_name}, Model type: {model_type}")
|
| 69 |
+
if model_type in text_generation_types or model_name in ["fine_tuned_gpt2", "merged_distilgpt2"]:
|
| 70 |
+
return "text-generation"
|
| 71 |
+
elif model_type in text_classification_types or model_name in ["emotion_classifier", "emotion_model", "intent_classifier", "intent_fallback"]:
|
| 72 |
+
return "text-classification"
|
| 73 |
+
elif model_name in ["intent_encoder", "sentence_transformer"] or "sentence_bert_config.json" in os.listdir(self.path):
|
| 74 |
+
return "sentence-embedding"
|
| 75 |
+
raise ValueError(f"Could not determine task for model_type: {model_type}, model_name: {model_name}")
|
| 76 |
+
|
| 77 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
| 78 |
+
inputs = data.get("inputs", "")
|
| 79 |
+
parameters = data.get("parameters", None)
|
| 80 |
+
if not inputs:
|
| 81 |
+
logger.warning("No inputs provided")
|
| 82 |
+
return [{"error": "No inputs provided"}]
|
| 83 |
+
|
| 84 |
+
try:
|
| 85 |
+
logger.info(f"Processing inputs for task: {self.task}")
|
| 86 |
+
if self.task == "text-generation":
|
| 87 |
+
result = self.pipeline(inputs, max_length=50, num_return_sequences=1, **(parameters or {}))
|
| 88 |
+
return [{"generated_text": item["generated_text"]} for item in result]
|
| 89 |
+
elif self.task == "text-classification":
|
| 90 |
+
result = self.pipeline(inputs, return_all_scores=True, **(parameters or {}))
|
| 91 |
+
return [{"label": item["label"], "score": item["score"]} for sublist in result for item in sublist]
|
| 92 |
+
elif self.task == "sentence-embedding":
|
| 93 |
+
embeddings = self.model.encode(inputs)
|
| 94 |
+
return [{"embeddings": embeddings.tolist()}]
|
| 95 |
+
return [{"error": f"Unsupported task: {self.task}"}]
|
| 96 |
+
except Exception as e:
|
| 97 |
+
logger.error(f"Inference failed: {str(e)}")
|
| 98 |
+
return [{"error": f"Inference failed: {str(e)}"}]
|