--- language: en license: mit arxiv: 2403.14852 ---
🌎 GitHub • 🤗 Hugging Face
----- ## 1. Introduction Model Name: DFA RESNET50 Related Paper: KeyPoint Relative Position Encoding for Face Recognition (https://arxiv.org/abs/2403.14852) Please cite the original paper and follow the license of the training dataset. ## 2. Quick Start ```python if __name__ == '__main__': from transformers import AutoModel from huggingface_hub import hf_hub_download import shutil import os import sys # helpfer function to download huggingface repo and use model def download(repo_id, path, HF_TOKEN=None): os.makedirs(path, exist_ok=True) files_path = os.path.join(path, 'files.txt') if not os.path.exists(files_path): hf_hub_download(repo_id, 'files.txt', token=HF_TOKEN, local_dir=path, local_dir_use_symlinks=False) with open(os.path.join(path, 'files.txt'), 'r') as f: files = f.read().split('\n') for file in [f for f in files if f] + ['config.json', 'wrapper.py', 'model.safetensors']: full_path = os.path.join(path, file) if not os.path.exists(full_path): hf_hub_download(repo_id, file, token=HF_TOKEN, local_dir=path, local_dir_use_symlinks=False) # helpfer function to download huggingface repo and use model def load_model_from_local_path(path, HF_TOKEN=None): cwd = os.getcwd() os.chdir(path) sys.path.insert(0, path) model = AutoModel.from_pretrained(path, trust_remote_code=True, token=HF_TOKEN) os.chdir(cwd) sys.path.pop(0) return model # helpfer function to download huggingface repo and use model def load_model_by_repo_id(repo_id, save_path, HF_TOKEN=None, force_download=False): if force_download: if os.path.exists(save_path): shutil.rmtree(save_path) download(repo_id, save_path, HF_TOKEN) return load_model_from_local_path(save_path, HF_TOKEN) if __name__ == '__main__': # load model HF_TOKEN = 'YOUR_HUGGINGFACE_TOKEN' path = os.path.expanduser('~/.cvlface_cache/minchul/cvlface_DFA_resnet50') repo_id = 'minchul/cvlface_DFA_resnet50' aligner = load_model_by_repo_id(repo_id, path, HF_TOKEN) # input is a rgb image normalized. from torchvision.transforms import Compose, ToTensor, Normalize from PIL import Image img = Image.open('/path/to/img.png') trans = Compose([ToTensor(), Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])]) input = trans(img).unsqueeze(0) # torch.randn(1, 3, 256, 256) or any size with a single face # predict landmarks and aligned image aligned_x, orig_ldmks, aligned_ldmks, score, thetas, bbox = aligner(input) # Documentation # aligned_x: aligned face image (1, 3, 112, 112) # orig_ldmks: predicted landmarks in the original image (1, 5, 2) # aligned_ldmks: predicted landmarks in the aligned image (1, 5, 2) # score: confidence score (1,) # thetas: transformation matrix transforming (1, 2, 3). See below for how to use it. # normalized_bbox: bounding box in the original image (1, 4) # differentiable alignment import torch.nn.functional as F grid = F.affine_grid(thetas, (1, 3, 112, 112), align_corners=True) manual_aligned_x = F.grid_sample(input, grid, align_corners=True) # manual_aligned_x should be same as aligned_x (up to some numerical error due to interpolation error) # here input can receive gradient through the grid_sample function. ``` ## Example Outputs![]() |
![]() |
![]() |
Input Image | Input Image with Landmark | Aligned Image with Landmark |