|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  | Fine-tuning the library models for sequence to sequence speech recognition | 
					
						
						|  | with 🤗 Datasets' streaming mode. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import logging | 
					
						
						|  | import os | 
					
						
						|  | import sys | 
					
						
						|  | from dataclasses import dataclass, field | 
					
						
						|  | from typing import Any, Dict, List, Optional, Union | 
					
						
						|  |  | 
					
						
						|  | import datasets | 
					
						
						|  | import torch | 
					
						
						|  | from datasets import DatasetDict, IterableDatasetDict, interleave_datasets, load_dataset | 
					
						
						|  | from torch.utils.data import IterableDataset | 
					
						
						|  |  | 
					
						
						|  | import evaluate | 
					
						
						|  | import transformers | 
					
						
						|  | from transformers import ( | 
					
						
						|  | AutoConfig, | 
					
						
						|  | AutoFeatureExtractor, | 
					
						
						|  | AutoModelForSpeechSeq2Seq, | 
					
						
						|  | AutoProcessor, | 
					
						
						|  | AutoTokenizer, | 
					
						
						|  | HfArgumentParser, | 
					
						
						|  | Seq2SeqTrainer, | 
					
						
						|  | Seq2SeqTrainingArguments, | 
					
						
						|  | TrainerCallback, | 
					
						
						|  | set_seed, | 
					
						
						|  | ) | 
					
						
						|  | from transformers.models.whisper.english_normalizer import BasicTextNormalizer | 
					
						
						|  | from transformers.trainer_pt_utils import IterableDatasetShard | 
					
						
						|  | from transformers.trainer_utils import get_last_checkpoint, is_main_process | 
					
						
						|  | from transformers.utils import check_min_version, send_example_telemetry | 
					
						
						|  | from transformers.utils.versions import require_version | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | check_min_version("4.25.0.dev0") | 
					
						
						|  |  | 
					
						
						|  | require_version("datasets>=1.18.2", "To fix: pip install -r examples/pytorch/speech-recognition/requirements.txt") | 
					
						
						|  |  | 
					
						
						|  | logger = logging.getLogger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @dataclass | 
					
						
						|  | class ModelArguments: | 
					
						
						|  | """ | 
					
						
						|  | Arguments pertaining to which model/config/tokenizer we are going to fine-tune from. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | model_name_or_path: str = field( | 
					
						
						|  | metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} | 
					
						
						|  | ) | 
					
						
						|  | config_name: Optional[str] = field( | 
					
						
						|  | default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"} | 
					
						
						|  | ) | 
					
						
						|  | tokenizer_name: Optional[str] = field( | 
					
						
						|  | default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} | 
					
						
						|  | ) | 
					
						
						|  | feature_extractor_name: Optional[str] = field( | 
					
						
						|  | default=None, metadata={"help": "feature extractor name or path if not the same as model_name"} | 
					
						
						|  | ) | 
					
						
						|  | cache_dir: Optional[str] = field( | 
					
						
						|  | default=None, | 
					
						
						|  | metadata={"help": "Where to store the pretrained models downloaded from huggingface.co"}, | 
					
						
						|  | ) | 
					
						
						|  | use_fast_tokenizer: bool = field( | 
					
						
						|  | default=True, | 
					
						
						|  | metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."}, | 
					
						
						|  | ) | 
					
						
						|  | model_revision: str = field( | 
					
						
						|  | default="main", | 
					
						
						|  | metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, | 
					
						
						|  | ) | 
					
						
						|  | use_auth_token: bool = field( | 
					
						
						|  | default=False, | 
					
						
						|  | metadata={ | 
					
						
						|  | "help": ( | 
					
						
						|  | "Will use the token generated when running `huggingface-cli login` (necessary to use this script " | 
					
						
						|  | "with private models)." | 
					
						
						|  | ) | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  | freeze_feature_encoder: bool = field( | 
					
						
						|  | default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."} | 
					
						
						|  | ) | 
					
						
						|  | freeze_encoder: bool = field( | 
					
						
						|  | default=False, metadata={"help": "Whether to freeze the entire encoder of the seq2seq model."} | 
					
						
						|  | ) | 
					
						
						|  | forced_decoder_ids: List[List[int]] = field( | 
					
						
						|  | default=None, | 
					
						
						|  | metadata={ | 
					
						
						|  | "help": ( | 
					
						
						|  | "A list of pairs of integers which indicates a mapping from generation indices to token indices " | 
					
						
						|  | "that will be forced before sampling. For example, [[0, 123]] means the first generated token " | 
					
						
						|  | "will always be a token of index 123." | 
					
						
						|  | ) | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  | suppress_tokens: List[int] = field( | 
					
						
						|  | default=None, metadata={"help": "A list of tokens that will be suppressed at generation."} | 
					
						
						|  | ) | 
					
						
						|  | model_index_name: str = field(default=None, metadata={"help": "Pretty name for the model card."}) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @dataclass | 
					
						
						|  | class DataTrainingArguments: | 
					
						
						|  | """ | 
					
						
						|  | Arguments pertaining to what data we are going to input our model for training and eval. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | dataset_name: str = field( | 
					
						
						|  | default=None, metadata={"help": "The name of the dataset to use (via the datasets library)."} | 
					
						
						|  | ) | 
					
						
						|  | dataset_config_name: Optional[str] = field( | 
					
						
						|  | default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} | 
					
						
						|  | ) | 
					
						
						|  | text_column: Optional[str] = field( | 
					
						
						|  | default=None, | 
					
						
						|  | metadata={"help": "The name of the column in the datasets containing the full texts (for summarization)."}, | 
					
						
						|  | ) | 
					
						
						|  | max_train_samples: Optional[int] = field( | 
					
						
						|  | default=None, | 
					
						
						|  | metadata={ | 
					
						
						|  | "help": ( | 
					
						
						|  | "For debugging purposes or quicker training, truncate the number of training examples to this " | 
					
						
						|  | "value if set." | 
					
						
						|  | ) | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  | max_eval_samples: Optional[int] = field( | 
					
						
						|  | default=None, | 
					
						
						|  | metadata={ | 
					
						
						|  | "help": ( | 
					
						
						|  | "For debugging purposes or quicker training, truncate the number of evaluation examples to this " | 
					
						
						|  | "value if set." | 
					
						
						|  | ) | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  | audio_column_name: str = field( | 
					
						
						|  | default="audio", | 
					
						
						|  | metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"}, | 
					
						
						|  | ) | 
					
						
						|  | text_column_name: str = field( | 
					
						
						|  | default="text", | 
					
						
						|  | metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"}, | 
					
						
						|  | ) | 
					
						
						|  | max_duration_in_seconds: float = field( | 
					
						
						|  | default=20.0, | 
					
						
						|  | metadata={ | 
					
						
						|  | "help": ( | 
					
						
						|  | "Truncate audio files that are longer than `max_duration_in_seconds` seconds to" | 
					
						
						|  | " 'max_duration_in_seconds`" | 
					
						
						|  | ) | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  | min_duration_in_seconds: float = field( | 
					
						
						|  | default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"} | 
					
						
						|  | ) | 
					
						
						|  | train_split_name: str = field( | 
					
						
						|  | default="train", | 
					
						
						|  | metadata={ | 
					
						
						|  | "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  | eval_split_name: str = field( | 
					
						
						|  | default="test", | 
					
						
						|  | metadata={ | 
					
						
						|  | "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  | do_lower_case: bool = field( | 
					
						
						|  | default=False, | 
					
						
						|  | metadata={"help": "Whether the target text should be lower cased."}, | 
					
						
						|  | ) | 
					
						
						|  | do_remove_punctuation: bool = field( | 
					
						
						|  | default=False, | 
					
						
						|  | metadata={"help": "Whether the target text should be striped of punctuation."}, | 
					
						
						|  | ) | 
					
						
						|  | do_normalize_eval: bool = field( | 
					
						
						|  | default=True, | 
					
						
						|  | metadata={"help": "Whether to normalise the references and predictions in the eval WER calculation."}, | 
					
						
						|  | ) | 
					
						
						|  | language: str = field( | 
					
						
						|  | default=None, | 
					
						
						|  | metadata={ | 
					
						
						|  | "help": ( | 
					
						
						|  | "Language for multilingual fine-tuning. This argument should be set for multilingual fine-tuning " | 
					
						
						|  | "only. For English speech recognition, it should be set to `None`." | 
					
						
						|  | ) | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  | task: str = field( | 
					
						
						|  | default="transcribe", | 
					
						
						|  | metadata={"help": "Task, either `transcribe` for speech recognition or `translate` for speech translation."}, | 
					
						
						|  | ) | 
					
						
						|  | shuffle_buffer_size: Optional[int] = field( | 
					
						
						|  | default=500, | 
					
						
						|  | metadata={ | 
					
						
						|  | "help": ( | 
					
						
						|  | "The number of streamed examples to download before shuffling them. The large the buffer, " | 
					
						
						|  | "the closer it is to real offline shuffling." | 
					
						
						|  | ) | 
					
						
						|  | }, | 
					
						
						|  | ) | 
					
						
						|  | streaming: bool = field( | 
					
						
						|  | default=True, | 
					
						
						|  | metadata={"help": "Whether to use streaming mode to load and pre-process the data."}, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @dataclass | 
					
						
						|  | class DataCollatorSpeechSeq2SeqWithPadding: | 
					
						
						|  | """ | 
					
						
						|  | Data collator that will dynamically pad the inputs received. | 
					
						
						|  | Args: | 
					
						
						|  | processor ([`WhisperProcessor`]) | 
					
						
						|  | The processor used for processing the data. | 
					
						
						|  | decoder_start_token_id (`int`) | 
					
						
						|  | The begin-of-sentence of the decoder. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | processor: Any | 
					
						
						|  | decoder_start_token_id: int | 
					
						
						|  |  | 
					
						
						|  | def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | model_input_name = self.processor.model_input_names[0] | 
					
						
						|  | input_features = [{model_input_name: feature[model_input_name]} for feature in features] | 
					
						
						|  | label_features = [{"input_ids": feature["labels"]} for feature in features] | 
					
						
						|  |  | 
					
						
						|  | batch = self.processor.feature_extractor.pad(input_features, return_tensors="pt") | 
					
						
						|  |  | 
					
						
						|  | labels_batch = self.processor.tokenizer.pad(label_features, return_tensors="pt") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if (labels[:, 0] == self.decoder_start_token_id).all().cpu().item(): | 
					
						
						|  | labels = labels[:, 1:] | 
					
						
						|  |  | 
					
						
						|  | batch["labels"] = labels | 
					
						
						|  |  | 
					
						
						|  | return batch | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def load_maybe_streaming_dataset(dataset_name, dataset_config_name, split="train", streaming=True, **kwargs): | 
					
						
						|  | """ | 
					
						
						|  | Utility function to load a dataset in streaming mode. For datasets with multiple splits, | 
					
						
						|  | each split is loaded individually and then splits combined by taking alternating examples from | 
					
						
						|  | each (interleaving). | 
					
						
						|  | """ | 
					
						
						|  | if "+" in split: | 
					
						
						|  |  | 
					
						
						|  | dataset_splits = [ | 
					
						
						|  | load_dataset(dataset_name, dataset_config_name, split=split_name, streaming=streaming, **kwargs) | 
					
						
						|  | for split_name in split.split("+") | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | interleaved_dataset = interleave_datasets(dataset_splits) | 
					
						
						|  | return interleaved_dataset | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | dataset = load_dataset(dataset_name, dataset_config_name, split=split, streaming=streaming, **kwargs) | 
					
						
						|  | return dataset | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def main(): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | parser = HfArgumentParser((ModelArguments, DataTrainingArguments, Seq2SeqTrainingArguments)) | 
					
						
						|  |  | 
					
						
						|  | if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1])) | 
					
						
						|  | else: | 
					
						
						|  | model_args, data_args, training_args = parser.parse_args_into_dataclasses() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | send_example_telemetry("run_speech_recognition_seq2seq_streaming", model_args, data_args) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logging.basicConfig( | 
					
						
						|  | format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", | 
					
						
						|  | datefmt="%m/%d/%Y %H:%M:%S", | 
					
						
						|  | handlers=[logging.StreamHandler(sys.stdout)], | 
					
						
						|  | ) | 
					
						
						|  | log_level = training_args.get_process_log_level() | 
					
						
						|  | logger.setLevel(log_level) | 
					
						
						|  | datasets.utils.logging.set_verbosity(log_level) | 
					
						
						|  | transformers.utils.logging.set_verbosity(log_level) | 
					
						
						|  | transformers.utils.logging.enable_default_handler() | 
					
						
						|  | transformers.utils.logging.enable_explicit_format() | 
					
						
						|  |  | 
					
						
						|  | logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger.warning( | 
					
						
						|  | f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" | 
					
						
						|  | f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}" | 
					
						
						|  | ) | 
					
						
						|  | logger.info(f"Training/evaluation parameters {training_args}") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if is_main_process(training_args.local_rank): | 
					
						
						|  | transformers.utils.logging.set_verbosity_info() | 
					
						
						|  | logger.info("Training/evaluation parameters %s", training_args) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | last_checkpoint = None | 
					
						
						|  | if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir: | 
					
						
						|  | last_checkpoint = get_last_checkpoint(training_args.output_dir) | 
					
						
						|  | if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Output directory ({training_args.output_dir}) already exists and is not empty. " | 
					
						
						|  | "Use --overwrite_output_dir to overcome." | 
					
						
						|  | ) | 
					
						
						|  | elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: | 
					
						
						|  | logger.info( | 
					
						
						|  | f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " | 
					
						
						|  | "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | set_seed(training_args.seed) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | raw_datasets = IterableDatasetDict() if data_args.streaming else DatasetDict() | 
					
						
						|  |  | 
					
						
						|  | if training_args.do_train: | 
					
						
						|  | raw_datasets["train"] = load_maybe_streaming_dataset( | 
					
						
						|  | data_args.dataset_name, | 
					
						
						|  | data_args.dataset_config_name, | 
					
						
						|  | split=data_args.train_split_name, | 
					
						
						|  | use_auth_token=True if model_args.use_auth_token else None, | 
					
						
						|  | streaming=data_args.streaming, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if training_args.do_eval: | 
					
						
						|  | raw_datasets["eval"] = load_maybe_streaming_dataset( | 
					
						
						|  | data_args.dataset_name, | 
					
						
						|  | data_args.dataset_config_name, | 
					
						
						|  | split=data_args.eval_split_name, | 
					
						
						|  | use_auth_token=True if model_args.use_auth_token else None, | 
					
						
						|  | streaming=data_args.streaming, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | raw_datasets_features = list(next(iter(raw_datasets.values())).features.keys()) | 
					
						
						|  |  | 
					
						
						|  | if data_args.audio_column_name not in raw_datasets_features: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. " | 
					
						
						|  | "Make sure to set `--audio_column_name` to the correct audio column - one of " | 
					
						
						|  | f"{', '.join(raw_datasets_features)}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if data_args.text_column_name not in raw_datasets_features: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. " | 
					
						
						|  | "Make sure to set `--text_column_name` to the correct text column - one of " | 
					
						
						|  | f"{', '.join(raw_datasets_features)}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | config = AutoConfig.from_pretrained( | 
					
						
						|  | model_args.config_name if model_args.config_name else model_args.model_name_or_path, | 
					
						
						|  | cache_dir=model_args.cache_dir, | 
					
						
						|  | revision=model_args.model_revision, | 
					
						
						|  | use_auth_token=True if model_args.use_auth_token else None, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | config.update({"forced_decoder_ids": model_args.forced_decoder_ids, "suppress_tokens": model_args.suppress_tokens}) | 
					
						
						|  |  | 
					
						
						|  | if training_args.gradient_checkpointing: | 
					
						
						|  | config.update({"use_cache": False}) | 
					
						
						|  |  | 
					
						
						|  | feature_extractor = AutoFeatureExtractor.from_pretrained( | 
					
						
						|  | model_args.feature_extractor_name if model_args.feature_extractor_name else model_args.model_name_or_path, | 
					
						
						|  | cache_dir=model_args.cache_dir, | 
					
						
						|  | revision=model_args.model_revision, | 
					
						
						|  | use_auth_token=True if model_args.use_auth_token else None, | 
					
						
						|  | ) | 
					
						
						|  | tokenizer = AutoTokenizer.from_pretrained( | 
					
						
						|  | model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, | 
					
						
						|  | cache_dir=model_args.cache_dir, | 
					
						
						|  | use_fast=model_args.use_fast_tokenizer, | 
					
						
						|  | revision=model_args.model_revision, | 
					
						
						|  | use_auth_token=True if model_args.use_auth_token else None, | 
					
						
						|  | ) | 
					
						
						|  | model = AutoModelForSpeechSeq2Seq.from_pretrained( | 
					
						
						|  | model_args.model_name_or_path, | 
					
						
						|  | config=config, | 
					
						
						|  | cache_dir=model_args.cache_dir, | 
					
						
						|  | revision=model_args.model_revision, | 
					
						
						|  | use_auth_token=True if model_args.use_auth_token else None, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if model.config.decoder_start_token_id is None: | 
					
						
						|  | raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined") | 
					
						
						|  |  | 
					
						
						|  | if model_args.freeze_feature_encoder: | 
					
						
						|  | model.freeze_feature_encoder() | 
					
						
						|  |  | 
					
						
						|  | if model_args.freeze_encoder: | 
					
						
						|  | model.freeze_encoder() | 
					
						
						|  |  | 
					
						
						|  | if data_args.language is not None: | 
					
						
						|  |  | 
					
						
						|  | tokenizer.set_prefix_tokens(language=data_args.language, task=data_args.task) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate | 
					
						
						|  | if dataset_sampling_rate != feature_extractor.sampling_rate: | 
					
						
						|  | raw_datasets = raw_datasets.cast_column( | 
					
						
						|  | data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate | 
					
						
						|  | min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate | 
					
						
						|  | audio_column_name = data_args.audio_column_name | 
					
						
						|  | text_column_name = data_args.text_column_name | 
					
						
						|  | model_input_name = feature_extractor.model_input_names[0] | 
					
						
						|  | do_lower_case = data_args.do_lower_case | 
					
						
						|  | do_remove_punctuation = data_args.do_remove_punctuation | 
					
						
						|  | normalizer = BasicTextNormalizer() | 
					
						
						|  |  | 
					
						
						|  | if data_args.max_train_samples is not None: | 
					
						
						|  | raw_datasets["train"] = ( | 
					
						
						|  | raw_datasets["train"].take(data_args.max_train_samples) | 
					
						
						|  | if data_args.streaming | 
					
						
						|  | else raw_datasets["train"].select(range(data_args.max_train_samples)) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if data_args.max_eval_samples is not None: | 
					
						
						|  | raw_datasets["eval"] = ( | 
					
						
						|  | raw_datasets["eval"].take(data_args.max_eval_samples) | 
					
						
						|  | if data_args.streaming | 
					
						
						|  | else raw_datasets["eval"].select(range(data_args.max_eval_samples)) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def prepare_dataset(batch): | 
					
						
						|  |  | 
					
						
						|  | sample = batch[audio_column_name] | 
					
						
						|  | inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"]) | 
					
						
						|  |  | 
					
						
						|  | batch[model_input_name] = inputs.get(model_input_name)[0] | 
					
						
						|  | batch["input_length"] = len(sample["array"]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | input_str = batch[text_column_name].lower() if do_lower_case else batch[text_column_name] | 
					
						
						|  | if do_remove_punctuation: | 
					
						
						|  | input_str = normalizer(input_str).strip() | 
					
						
						|  | batch["labels"] = tokenizer(input_str).input_ids | 
					
						
						|  | return batch | 
					
						
						|  |  | 
					
						
						|  | with training_args.main_process_first(desc="dataset map pre-processing"): | 
					
						
						|  | vectorized_datasets = raw_datasets.map( | 
					
						
						|  | prepare_dataset, | 
					
						
						|  | remove_columns=raw_datasets_features, | 
					
						
						|  | ).with_format("torch") | 
					
						
						|  |  | 
					
						
						|  | if training_args.do_train and data_args.streaming: | 
					
						
						|  |  | 
					
						
						|  | vectorized_datasets["train"] = vectorized_datasets["train"].shuffle( | 
					
						
						|  | buffer_size=data_args.shuffle_buffer_size, | 
					
						
						|  | seed=training_args.seed, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def is_audio_in_length_range(length): | 
					
						
						|  | return min_input_length < length < max_input_length | 
					
						
						|  |  | 
					
						
						|  | if training_args.do_train: | 
					
						
						|  | vectorized_datasets["train"] = vectorized_datasets["train"].filter( | 
					
						
						|  | is_audio_in_length_range, | 
					
						
						|  | input_columns=["input_length"], | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | metric = evaluate.load("wer") | 
					
						
						|  | do_normalize_eval = data_args.do_normalize_eval | 
					
						
						|  |  | 
					
						
						|  | def compute_metrics(pred): | 
					
						
						|  | pred_ids = pred.predictions | 
					
						
						|  |  | 
					
						
						|  | pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id | 
					
						
						|  |  | 
					
						
						|  | pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True) | 
					
						
						|  |  | 
					
						
						|  | label_str = tokenizer.batch_decode(pred.label_ids, skip_special_tokens=True) | 
					
						
						|  |  | 
					
						
						|  | if do_normalize_eval: | 
					
						
						|  | pred_str = [normalizer(pred) for pred in pred_str] | 
					
						
						|  | label_str = [normalizer(label) for label in label_str] | 
					
						
						|  |  | 
					
						
						|  | pred_str = [pred_str[i] for i in range(len(pred_str)) if len(label_str[i]) > 0] | 
					
						
						|  | label_str = [label_str[i] for i in range(len(label_str)) if len(label_str[i]) > 0] | 
					
						
						|  |  | 
					
						
						|  | wer = 100 * metric.compute(predictions=pred_str, references=label_str) | 
					
						
						|  |  | 
					
						
						|  | return {"wer": wer} | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if is_main_process(training_args.local_rank): | 
					
						
						|  |  | 
					
						
						|  | feature_extractor.save_pretrained(training_args.output_dir) | 
					
						
						|  | tokenizer.save_pretrained(training_args.output_dir) | 
					
						
						|  | config.save_pretrained(training_args.output_dir) | 
					
						
						|  |  | 
					
						
						|  | processor = AutoProcessor.from_pretrained(training_args.output_dir) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | data_collator = DataCollatorSpeechSeq2SeqWithPadding( | 
					
						
						|  | processor=processor, | 
					
						
						|  | decoder_start_token_id=model.config.decoder_start_token_id, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class ShuffleCallback(TrainerCallback): | 
					
						
						|  | def on_epoch_begin(self, args, state, control, train_dataloader, **kwargs): | 
					
						
						|  | if isinstance(train_dataloader.dataset, IterableDatasetShard): | 
					
						
						|  | pass | 
					
						
						|  | elif isinstance(train_dataloader.dataset, IterableDataset): | 
					
						
						|  | train_dataloader.dataset.set_epoch(train_dataloader.dataset._epoch + 1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | trainer = Seq2SeqTrainer( | 
					
						
						|  | model=model, | 
					
						
						|  | args=training_args, | 
					
						
						|  | train_dataset=vectorized_datasets["train"] if training_args.do_train else None, | 
					
						
						|  | eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None, | 
					
						
						|  | tokenizer=feature_extractor, | 
					
						
						|  | data_collator=data_collator, | 
					
						
						|  | compute_metrics=compute_metrics if training_args.predict_with_generate else None, | 
					
						
						|  | callbacks=[ShuffleCallback()] if data_args.streaming else None, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if training_args.do_train: | 
					
						
						|  | checkpoint = None | 
					
						
						|  | if training_args.resume_from_checkpoint is not None: | 
					
						
						|  | checkpoint = training_args.resume_from_checkpoint | 
					
						
						|  | elif last_checkpoint is not None: | 
					
						
						|  | checkpoint = last_checkpoint | 
					
						
						|  | train_result = trainer.train(resume_from_checkpoint=checkpoint) | 
					
						
						|  | trainer.save_model() | 
					
						
						|  |  | 
					
						
						|  | metrics = train_result.metrics | 
					
						
						|  | if data_args.max_train_samples: | 
					
						
						|  | metrics["train_samples"] = data_args.max_train_samples | 
					
						
						|  | trainer.log_metrics("train", metrics) | 
					
						
						|  | trainer.save_metrics("train", metrics) | 
					
						
						|  | trainer.save_state() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | results = {} | 
					
						
						|  | if training_args.do_eval: | 
					
						
						|  | logger.info("*** Evaluate ***") | 
					
						
						|  | metrics = trainer.evaluate( | 
					
						
						|  | metric_key_prefix="eval", | 
					
						
						|  | max_length=training_args.generation_max_length, | 
					
						
						|  | num_beams=training_args.generation_num_beams, | 
					
						
						|  | ) | 
					
						
						|  | if data_args.max_eval_samples: | 
					
						
						|  | metrics["eval_samples"] = data_args.max_eval_samples | 
					
						
						|  |  | 
					
						
						|  | trainer.log_metrics("eval", metrics) | 
					
						
						|  | trainer.save_metrics("eval", metrics) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | kwargs = { | 
					
						
						|  | "finetuned_from": model_args.model_name_or_path, | 
					
						
						|  | "tasks": "automatic-speech-recognition", | 
					
						
						|  | "tags": "whisper-event", | 
					
						
						|  | } | 
					
						
						|  | if data_args.dataset_name is not None: | 
					
						
						|  | kwargs["dataset_tags"] = data_args.dataset_name | 
					
						
						|  | if data_args.dataset_config_name is not None: | 
					
						
						|  | kwargs["dataset"] = f"{data_args.dataset_name} {data_args.dataset_config_name}" | 
					
						
						|  | else: | 
					
						
						|  | kwargs["dataset"] = data_args.dataset_name | 
					
						
						|  | if "common_voice" in data_args.dataset_name: | 
					
						
						|  | kwargs["language"] = data_args.dataset_config_name[:2] | 
					
						
						|  | if model_args.model_index_name is not None: | 
					
						
						|  | kwargs["model_name"] = model_args.model_index_name | 
					
						
						|  |  | 
					
						
						|  | if training_args.push_to_hub: | 
					
						
						|  | trainer.push_to_hub(**kwargs) | 
					
						
						|  | else: | 
					
						
						|  | trainer.create_model_card(**kwargs) | 
					
						
						|  |  | 
					
						
						|  | return results | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if __name__ == "__main__": | 
					
						
						|  | main() | 
					
						
						|  |  |