# Miniguanaco-7b Assistant Bot ![Assistant Bot](https://media.istockphoto.com/id/1191411962/vector/cute-robot.jpg?s=612x612&w=0&k=20&c=KelCNJMam1XGwVM0HclQtHIHZxByJZOtnRjkBbHrAKw=) This is a Miniguanaco-7b assistant bot, fine-tuned using QLoRA (4-bit precision) on the [`mlabonne/guanaco-llama2-1k`](https://huggingface.co/datasets/mlabonne/guanaco-llama2-1k) dataset, a subset of [`timdettmers/openassistant-guanaco`](https://huggingface.co/datasets/timdettmers/openassistant-guanaco). ## Training The model was trained on a Google Colab notebook with a T4 GPU and high RAM. Please note that it is primarily designed for educational purposes and may not be optimized for production-level inference. ## Usage To use the Miniguanaco-7b assistant bot, you can follow the code example below: ```python # pip install transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "mlabonne/llama-2-7b-miniguanaco" prompt = "What is a large language model?" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) sequences = pipeline( f'[INST] {prompt} [/INST]', do_sample=True, top_k=10, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id, max_length=200, ) for seq in sequences: print(f"Result: {seq['generated_text']}")