Upload folder using huggingface_hub
Browse files- config.json +17 -0
- configuration_infmllm.py +23 -0
- eva_vit.py +412 -0
- modeling_infmllm.py +286 -0
- pooler.py +52 -0
- pytorch_model-00001-of-00002.bin +3 -0
- pytorch_model-00002-of-00002.bin +3 -0
- pytorch_model.bin.index.json +847 -0
config.json
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"InfMLLM"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "configuration_infmllm.InfMLLMConfig",
|
7 |
+
"AutoModel": "modeling_infmllm.InfMLLM"
|
8 |
+
},
|
9 |
+
"image_size": 448,
|
10 |
+
"lm_model": "pretrain_models/lmsys/vicuna-7b-v1.5/",
|
11 |
+
"lm_tokenizer": "pretrain_models/lmsys/vicuna-7b-v1.5/",
|
12 |
+
"pool_out_size": "32+16+8",
|
13 |
+
"precision": "amp_bf16",
|
14 |
+
"torch_dtype": "float32",
|
15 |
+
"transformers_version": "4.31.0",
|
16 |
+
"vit_model": "eva_clip_g"
|
17 |
+
}
|
configuration_infmllm.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
|
5 |
+
class InfMLLMConfig(PretrainedConfig):
|
6 |
+
def __init__(
|
7 |
+
self,
|
8 |
+
image_size="448",
|
9 |
+
vit_model="eva_clip_g",
|
10 |
+
pool_out_size="32",
|
11 |
+
lm_model="pretrain_models/lmsys/vicuna-7b-v1.5/",
|
12 |
+
lm_tokenizer="pretrain_models/lmsys/vicuna-7b-v1.5/",
|
13 |
+
precision="amp_bf16",
|
14 |
+
**kwargs
|
15 |
+
):
|
16 |
+
self.image_size = image_size
|
17 |
+
self.vit_model = vit_model
|
18 |
+
self.pool_out_size = pool_out_size
|
19 |
+
self.lm_model = lm_model
|
20 |
+
self.lm_tokenizer = lm_tokenizer
|
21 |
+
self.precision = precision
|
22 |
+
super().__init__(**kwargs)
|
23 |
+
|
eva_vit.py
ADDED
@@ -0,0 +1,412 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Based on EVA, BEIT, timm and DeiT code bases
|
2 |
+
# https://github.com/baaivision/EVA
|
3 |
+
# https://github.com/rwightman/pytorch-image-models/tree/master/timm
|
4 |
+
# https://github.com/microsoft/unilm/tree/master/beit
|
5 |
+
# https://github.com/facebookresearch/deit/
|
6 |
+
# https://github.com/facebookresearch/dino
|
7 |
+
# --------------------------------------------------------'
|
8 |
+
import os
|
9 |
+
import math
|
10 |
+
from functools import partial
|
11 |
+
import glob
|
12 |
+
|
13 |
+
import torch
|
14 |
+
import torch.nn as nn
|
15 |
+
import torch.nn.functional as F
|
16 |
+
import torch.utils.checkpoint as checkpoint
|
17 |
+
from timm.models.layers import drop_path, to_2tuple, trunc_normal_
|
18 |
+
|
19 |
+
|
20 |
+
class DropPath(nn.Module):
|
21 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
22 |
+
"""
|
23 |
+
def __init__(self, drop_prob=None):
|
24 |
+
super(DropPath, self).__init__()
|
25 |
+
self.drop_prob = drop_prob
|
26 |
+
|
27 |
+
def forward(self, x):
|
28 |
+
return drop_path(x, self.drop_prob, self.training)
|
29 |
+
|
30 |
+
def extra_repr(self) -> str:
|
31 |
+
return 'p={}'.format(self.drop_prob)
|
32 |
+
|
33 |
+
|
34 |
+
class Mlp(nn.Module):
|
35 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
36 |
+
super().__init__()
|
37 |
+
out_features = out_features or in_features
|
38 |
+
hidden_features = hidden_features or in_features
|
39 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
40 |
+
self.act = act_layer()
|
41 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
42 |
+
self.drop = nn.Dropout(drop)
|
43 |
+
|
44 |
+
def forward(self, x):
|
45 |
+
x = self.fc1(x)
|
46 |
+
x = self.act(x)
|
47 |
+
# x = self.drop(x)
|
48 |
+
# commit this for the orignal BERT implement
|
49 |
+
x = self.fc2(x)
|
50 |
+
x = self.drop(x)
|
51 |
+
return x
|
52 |
+
|
53 |
+
|
54 |
+
class Attention(nn.Module):
|
55 |
+
def __init__(
|
56 |
+
self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
|
57 |
+
proj_drop=0., window_size=None, attn_head_dim=None):
|
58 |
+
super().__init__()
|
59 |
+
self.num_heads = num_heads
|
60 |
+
head_dim = dim // num_heads
|
61 |
+
if attn_head_dim is not None:
|
62 |
+
head_dim = attn_head_dim
|
63 |
+
all_head_dim = head_dim * self.num_heads
|
64 |
+
self.scale = qk_scale or head_dim ** -0.5
|
65 |
+
|
66 |
+
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
|
67 |
+
if qkv_bias:
|
68 |
+
self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
|
69 |
+
self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
|
70 |
+
else:
|
71 |
+
self.q_bias = None
|
72 |
+
self.v_bias = None
|
73 |
+
|
74 |
+
if window_size:
|
75 |
+
self.window_size = window_size
|
76 |
+
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
|
77 |
+
self.relative_position_bias_table = nn.Parameter(
|
78 |
+
torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
79 |
+
# cls to token & token 2 cls & cls to cls
|
80 |
+
|
81 |
+
# get pair-wise relative position index for each token inside the window
|
82 |
+
coords_h = torch.arange(window_size[0])
|
83 |
+
coords_w = torch.arange(window_size[1])
|
84 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
85 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
86 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
87 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
88 |
+
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
|
89 |
+
relative_coords[:, :, 1] += window_size[1] - 1
|
90 |
+
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
|
91 |
+
relative_position_index = \
|
92 |
+
torch.zeros(size=(window_size[0] * window_size[1] + 1, ) * 2, dtype=relative_coords.dtype)
|
93 |
+
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
94 |
+
relative_position_index[0, 0:] = self.num_relative_distance - 3
|
95 |
+
relative_position_index[0:, 0] = self.num_relative_distance - 2
|
96 |
+
relative_position_index[0, 0] = self.num_relative_distance - 1
|
97 |
+
|
98 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
99 |
+
else:
|
100 |
+
self.window_size = None
|
101 |
+
self.relative_position_bias_table = None
|
102 |
+
self.relative_position_index = None
|
103 |
+
|
104 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
105 |
+
self.proj = nn.Linear(all_head_dim, dim)
|
106 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
107 |
+
|
108 |
+
def forward(self, x, rel_pos_bias=None):
|
109 |
+
B, N, C = x.shape
|
110 |
+
qkv_bias = None
|
111 |
+
if self.q_bias is not None:
|
112 |
+
qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
|
113 |
+
# qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
114 |
+
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
|
115 |
+
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
|
116 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
117 |
+
|
118 |
+
q = q * self.scale
|
119 |
+
attn = (q @ k.transpose(-2, -1))
|
120 |
+
|
121 |
+
if self.relative_position_bias_table is not None:
|
122 |
+
relative_position_bias = \
|
123 |
+
self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
124 |
+
self.window_size[0] * self.window_size[1] + 1,
|
125 |
+
self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
|
126 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
127 |
+
attn = attn + relative_position_bias.unsqueeze(0)
|
128 |
+
|
129 |
+
if rel_pos_bias is not None:
|
130 |
+
attn = attn + rel_pos_bias
|
131 |
+
|
132 |
+
attn = attn.softmax(dim=-1)
|
133 |
+
attn = self.attn_drop(attn)
|
134 |
+
|
135 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
|
136 |
+
x = self.proj(x)
|
137 |
+
x = self.proj_drop(x)
|
138 |
+
return x
|
139 |
+
|
140 |
+
|
141 |
+
class Block(nn.Module):
|
142 |
+
|
143 |
+
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
144 |
+
drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm,
|
145 |
+
window_size=None, attn_head_dim=None):
|
146 |
+
super().__init__()
|
147 |
+
self.norm1 = norm_layer(dim)
|
148 |
+
self.attn = Attention(
|
149 |
+
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
150 |
+
attn_drop=attn_drop, proj_drop=drop, window_size=window_size, attn_head_dim=attn_head_dim)
|
151 |
+
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
152 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
153 |
+
self.norm2 = norm_layer(dim)
|
154 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
155 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
156 |
+
|
157 |
+
if init_values is not None and init_values > 0:
|
158 |
+
self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
|
159 |
+
self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
|
160 |
+
else:
|
161 |
+
self.gamma_1, self.gamma_2 = None, None
|
162 |
+
|
163 |
+
def forward(self, x, rel_pos_bias=None):
|
164 |
+
if self.gamma_1 is None:
|
165 |
+
x = x + self.drop_path(self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias))
|
166 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
167 |
+
else:
|
168 |
+
x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias))
|
169 |
+
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
|
170 |
+
return x
|
171 |
+
|
172 |
+
|
173 |
+
class PatchEmbed(nn.Module):
|
174 |
+
""" Image to Patch Embedding
|
175 |
+
"""
|
176 |
+
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
|
177 |
+
super().__init__()
|
178 |
+
img_size = to_2tuple(img_size)
|
179 |
+
patch_size = to_2tuple(patch_size)
|
180 |
+
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
|
181 |
+
self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
|
182 |
+
self.img_size = img_size
|
183 |
+
self.patch_size = patch_size
|
184 |
+
self.num_patches = num_patches
|
185 |
+
|
186 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
|
187 |
+
|
188 |
+
def forward(self, x, **kwargs):
|
189 |
+
B, C, H, W = x.shape
|
190 |
+
# FIXME look at relaxing size constraints
|
191 |
+
assert H == self.img_size[0] and W == self.img_size[1], \
|
192 |
+
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
193 |
+
x = self.proj(x).flatten(2).transpose(1, 2)
|
194 |
+
return x
|
195 |
+
|
196 |
+
|
197 |
+
class RelativePositionBias(nn.Module):
|
198 |
+
|
199 |
+
def __init__(self, window_size, num_heads):
|
200 |
+
super().__init__()
|
201 |
+
self.window_size = window_size
|
202 |
+
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
|
203 |
+
self.relative_position_bias_table = nn.Parameter(
|
204 |
+
torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
205 |
+
|
206 |
+
# get pair-wise relative position index for each token inside the window
|
207 |
+
coords_h = torch.arange(window_size[0])
|
208 |
+
coords_w = torch.arange(window_size[1])
|
209 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
210 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
211 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
212 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
213 |
+
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
|
214 |
+
relative_coords[:, :, 1] += window_size[1] - 1
|
215 |
+
relative_coords[:, :, 0] *= 2 * window_size[1] - 1
|
216 |
+
relative_position_index = \
|
217 |
+
torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype)
|
218 |
+
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
219 |
+
relative_position_index[0, 0:] = self.num_relative_distance - 3
|
220 |
+
relative_position_index[0:, 0] = self.num_relative_distance - 2
|
221 |
+
relative_position_index[0, 0] = self.num_relative_distance - 1
|
222 |
+
|
223 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
224 |
+
|
225 |
+
def forward(self):
|
226 |
+
relative_position_bias = \
|
227 |
+
self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
228 |
+
self.window_size[0] * self.window_size[1] + 1,
|
229 |
+
self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
|
230 |
+
return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
231 |
+
|
232 |
+
|
233 |
+
class VisionTransformer(nn.Module):
|
234 |
+
""" Vision Transformer with support for patch or hybrid CNN input stage
|
235 |
+
"""
|
236 |
+
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
|
237 |
+
num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
|
238 |
+
drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None,
|
239 |
+
use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False,
|
240 |
+
use_mean_pooling=True, init_scale=0.001, use_checkpoint=False):
|
241 |
+
super().__init__()
|
242 |
+
self.image_size = img_size
|
243 |
+
self.num_classes = num_classes
|
244 |
+
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
|
245 |
+
|
246 |
+
self.patch_embed = PatchEmbed(
|
247 |
+
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
|
248 |
+
num_patches = self.patch_embed.num_patches
|
249 |
+
|
250 |
+
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
|
251 |
+
if use_abs_pos_emb:
|
252 |
+
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
|
253 |
+
else:
|
254 |
+
self.pos_embed = None
|
255 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
256 |
+
|
257 |
+
if use_shared_rel_pos_bias:
|
258 |
+
self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.patch_shape, num_heads=num_heads)
|
259 |
+
else:
|
260 |
+
self.rel_pos_bias = None
|
261 |
+
self.use_checkpoint = use_checkpoint
|
262 |
+
|
263 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
264 |
+
self.use_rel_pos_bias = use_rel_pos_bias
|
265 |
+
self.blocks = nn.ModuleList([
|
266 |
+
Block(
|
267 |
+
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
268 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
|
269 |
+
init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None,
|
270 |
+
)
|
271 |
+
for i in range(depth)])
|
272 |
+
|
273 |
+
if self.pos_embed is not None:
|
274 |
+
trunc_normal_(self.pos_embed, std=.02)
|
275 |
+
trunc_normal_(self.cls_token, std=.02)
|
276 |
+
|
277 |
+
self.apply(self._init_weights)
|
278 |
+
self.fix_init_weight()
|
279 |
+
|
280 |
+
def fix_init_weight(self):
|
281 |
+
def rescale(param, layer_id):
|
282 |
+
param.div_(math.sqrt(2.0 * layer_id))
|
283 |
+
|
284 |
+
for layer_id, layer in enumerate(self.blocks):
|
285 |
+
rescale(layer.attn.proj.weight.data, layer_id + 1)
|
286 |
+
rescale(layer.mlp.fc2.weight.data, layer_id + 1)
|
287 |
+
|
288 |
+
def _init_weights(self, m):
|
289 |
+
if isinstance(m, nn.Linear):
|
290 |
+
trunc_normal_(m.weight, std=.02)
|
291 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
292 |
+
nn.init.constant_(m.bias, 0)
|
293 |
+
elif isinstance(m, nn.LayerNorm):
|
294 |
+
nn.init.constant_(m.bias, 0)
|
295 |
+
nn.init.constant_(m.weight, 1.0)
|
296 |
+
|
297 |
+
def get_classifier(self):
|
298 |
+
return self.head
|
299 |
+
|
300 |
+
def reset_classifier(self, num_classes, global_pool=''):
|
301 |
+
self.num_classes = num_classes
|
302 |
+
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
303 |
+
|
304 |
+
def forward_features(self, x):
|
305 |
+
x = self.patch_embed(x)
|
306 |
+
batch_size, seq_len, _ = x.size()
|
307 |
+
|
308 |
+
cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
|
309 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
310 |
+
if self.pos_embed is not None:
|
311 |
+
x = x + self.pos_embed
|
312 |
+
x = self.pos_drop(x)
|
313 |
+
|
314 |
+
rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None
|
315 |
+
for blk in self.blocks:
|
316 |
+
if self.use_checkpoint:
|
317 |
+
x = checkpoint.checkpoint(blk, x, rel_pos_bias)
|
318 |
+
else:
|
319 |
+
x = blk(x, rel_pos_bias)
|
320 |
+
return x
|
321 |
+
|
322 |
+
|
323 |
+
def forward(self, x):
|
324 |
+
x = self.forward_features(x)
|
325 |
+
return x
|
326 |
+
|
327 |
+
def get_intermediate_layers(self, x):
|
328 |
+
x = self.patch_embed(x)
|
329 |
+
batch_size, seq_len, _ = x.size()
|
330 |
+
|
331 |
+
cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
|
332 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
333 |
+
if self.pos_embed is not None:
|
334 |
+
x = x + self.pos_embed
|
335 |
+
x = self.pos_drop(x)
|
336 |
+
|
337 |
+
features = []
|
338 |
+
rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None
|
339 |
+
for blk in self.blocks:
|
340 |
+
x = blk(x, rel_pos_bias)
|
341 |
+
features.append(x)
|
342 |
+
|
343 |
+
return features
|
344 |
+
|
345 |
+
def get_num_layer(self, var_name=""):
|
346 |
+
if var_name in ("cls_token", "mask_token", "pos_embed"):
|
347 |
+
return 0
|
348 |
+
elif var_name.startswith("patch_embed"):
|
349 |
+
return 0
|
350 |
+
elif var_name.startswith("rel_pos_bias"):
|
351 |
+
return len(self.blocks) - 1
|
352 |
+
elif var_name.startswith("blocks"):
|
353 |
+
layer_id = int(var_name.split('.')[1])
|
354 |
+
return layer_id + 1
|
355 |
+
else:
|
356 |
+
return len(self.blocks)
|
357 |
+
|
358 |
+
|
359 |
+
def interpolate_pos_embed(model, checkpoint_model):
|
360 |
+
if 'pos_embed' in checkpoint_model:
|
361 |
+
pos_embed_checkpoint = checkpoint_model['pos_embed'].float()
|
362 |
+
embedding_size = pos_embed_checkpoint.shape[-1]
|
363 |
+
num_patches = model.patch_embed.num_patches
|
364 |
+
num_extra_tokens = model.pos_embed.shape[-2] - num_patches
|
365 |
+
# height (== width) for the checkpoint position embedding
|
366 |
+
orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
|
367 |
+
# height (== width) for the new position embedding
|
368 |
+
new_size = int(num_patches ** 0.5)
|
369 |
+
# class_token and dist_token are kept unchanged
|
370 |
+
if orig_size != new_size:
|
371 |
+
print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size))
|
372 |
+
extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
|
373 |
+
# only the position tokens are interpolated
|
374 |
+
pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
|
375 |
+
pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
|
376 |
+
pos_tokens = torch.nn.functional.interpolate(
|
377 |
+
pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
|
378 |
+
pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
|
379 |
+
new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
|
380 |
+
checkpoint_model['pos_embed'] = new_pos_embed
|
381 |
+
|
382 |
+
|
383 |
+
def convert_weights_to_fp16(model: nn.Module):
|
384 |
+
"""Convert applicable model parameters to fp16"""
|
385 |
+
|
386 |
+
def _convert_weights_to_fp16(l):
|
387 |
+
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
|
388 |
+
l.weight.data = l.weight.data.half()
|
389 |
+
if l.bias is not None:
|
390 |
+
l.bias.data = l.bias.data.half()
|
391 |
+
|
392 |
+
model.apply(_convert_weights_to_fp16)
|
393 |
+
|
394 |
+
|
395 |
+
def create_eva_vit_g(img_size=224,
|
396 |
+
drop_path_rate=0.4,
|
397 |
+
use_checkpoint=False):
|
398 |
+
|
399 |
+
model = VisionTransformer(
|
400 |
+
img_size=img_size,
|
401 |
+
patch_size=14,
|
402 |
+
use_mean_pooling=False,
|
403 |
+
embed_dim=1408,
|
404 |
+
depth=39,
|
405 |
+
num_heads=1408//88,
|
406 |
+
mlp_ratio=4.3637,
|
407 |
+
qkv_bias=True,
|
408 |
+
drop_path_rate=drop_path_rate,
|
409 |
+
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
410 |
+
use_checkpoint=use_checkpoint,
|
411 |
+
)
|
412 |
+
return model
|
modeling_infmllm.py
ADDED
@@ -0,0 +1,286 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from contextlib import suppress
|
5 |
+
from einops import rearrange
|
6 |
+
from transformers import LlamaForCausalLM, LlamaTokenizer, PreTrainedModel
|
7 |
+
from torchvision import transforms
|
8 |
+
from torchvision.transforms.functional import InterpolationMode
|
9 |
+
|
10 |
+
from .eva_vit import create_eva_vit_g
|
11 |
+
from .pooler import Pooler
|
12 |
+
|
13 |
+
|
14 |
+
def get_autocast(precision, cache_enabled=True):
|
15 |
+
if precision == "amp":
|
16 |
+
return lambda: torch.cuda.amp.autocast(cache_enabled=cache_enabled)
|
17 |
+
elif precision == "amp_bfloat16" or precision == "amp_bf16" or precision == 'bf16':
|
18 |
+
return lambda: torch.cuda.amp.autocast(dtype=torch.bfloat16, cache_enabled=cache_enabled)
|
19 |
+
elif precision == 'fp16':
|
20 |
+
return lambda: torch.cuda.amp.autocast(dtype=torch.float16, cache_enabled=cache_enabled)
|
21 |
+
elif precision == 'fp32':
|
22 |
+
return suppress
|
23 |
+
else:
|
24 |
+
raise ValueError('not supported precision: {}'.format(precision))
|
25 |
+
|
26 |
+
class LayerNorm(nn.LayerNorm):
|
27 |
+
"""Subclass torch's LayerNorm to handle fp16."""
|
28 |
+
def forward(self, x: torch.Tensor):
|
29 |
+
orig_type = x.dtype
|
30 |
+
ret = super().forward(x.type(torch.float32))
|
31 |
+
return ret.type(orig_type)
|
32 |
+
|
33 |
+
def init_vision_encoder(model_name,
|
34 |
+
img_size,
|
35 |
+
drop_path_rate,
|
36 |
+
use_grad_checkpoint):
|
37 |
+
if model_name == "eva_clip_g":
|
38 |
+
visual_encoder = create_eva_vit_g(
|
39 |
+
img_size, drop_path_rate, use_grad_checkpoint)
|
40 |
+
else:
|
41 |
+
raise ValueError()
|
42 |
+
|
43 |
+
ln_vision = LayerNorm(visual_encoder.num_features)
|
44 |
+
return visual_encoder, ln_vision
|
45 |
+
|
46 |
+
class ImageProcessor:
|
47 |
+
def __init__(self, image_size=364, mean=None, std=None):
|
48 |
+
if mean is None:
|
49 |
+
self.mean = mean = (0.48145466, 0.4578275, 0.40821073)
|
50 |
+
if std is None:
|
51 |
+
self.std = std = (0.26862954, 0.26130258, 0.27577711)
|
52 |
+
|
53 |
+
self.normalize = transforms.Normalize(mean, std)
|
54 |
+
self.transform = transforms.Compose(
|
55 |
+
[
|
56 |
+
transforms.Resize(
|
57 |
+
(image_size, image_size), interpolation=InterpolationMode.BICUBIC
|
58 |
+
),
|
59 |
+
transforms.ToTensor(),
|
60 |
+
self.normalize,
|
61 |
+
]
|
62 |
+
)
|
63 |
+
|
64 |
+
def __call__(self, item):
|
65 |
+
return self.transform(item)
|
66 |
+
|
67 |
+
class InfMLLM(PreTrainedModel):
|
68 |
+
def __init__(self, config):
|
69 |
+
super().__init__(config)
|
70 |
+
vit_model = config.vit_model
|
71 |
+
img_size = config.image_size
|
72 |
+
lm_model = config.lm_model
|
73 |
+
lm_tokenizer = config.lm_tokenizer
|
74 |
+
precision = config.precision
|
75 |
+
pool_out_size = config.pool_out_size
|
76 |
+
self.img_processor = ImageProcessor(image_size=img_size)
|
77 |
+
|
78 |
+
self.visual_encoder, self.ln_vision = init_vision_encoder(
|
79 |
+
vit_model, img_size, drop_path_rate=0.0, use_grad_checkpoint=False)
|
80 |
+
|
81 |
+
self.lm_tokenizer = LlamaTokenizer.from_pretrained(lm_tokenizer, use_fast=False, trust_remote_code=True)
|
82 |
+
self.lm_tokenizer.pad_token = self.lm_tokenizer.unk_token
|
83 |
+
self.lm_model = LlamaForCausalLM.from_pretrained(lm_model, trust_remote_code=True, torch_dtype='auto')
|
84 |
+
|
85 |
+
self.pooler = Pooler(dim_in=self.visual_encoder.num_features,
|
86 |
+
dim_out=self.lm_model.config.hidden_size,
|
87 |
+
pool_out_size=pool_out_size)
|
88 |
+
self.llama_proj = nn.Identity()
|
89 |
+
|
90 |
+
self.precision = precision
|
91 |
+
self._apply_lemmatizer = config.apply_lemmatizer if hasattr(config, 'apply_lemmatizer') else False
|
92 |
+
self._lemmatizer = None
|
93 |
+
|
94 |
+
def prompt_wrap(self, img_embeds, atts_img, prompts):
|
95 |
+
assert len(img_embeds) == len(atts_img) == len(prompts)
|
96 |
+
|
97 |
+
bos = torch.ones([1, 1], dtype=torch.long, device=img_embeds.device) * self.lm_tokenizer.bos_token_id
|
98 |
+
bos_embeds = self.lm_model.get_input_embeddings()(bos)
|
99 |
+
|
100 |
+
emb_lists = []
|
101 |
+
image_mask = []
|
102 |
+
for each_img_embed, each_prompt in zip(img_embeds, prompts):
|
103 |
+
assert '<ImageHere>' in each_prompt
|
104 |
+
p_before, p_after = each_prompt.split('<ImageHere>')
|
105 |
+
|
106 |
+
p_before_tokens = self.lm_tokenizer(
|
107 |
+
p_before, return_tensors="pt", add_special_tokens=False).to(img_embeds.device)
|
108 |
+
p_after_tokens = self.lm_tokenizer(
|
109 |
+
p_after, return_tensors="pt", add_special_tokens=False).to(img_embeds.device)
|
110 |
+
|
111 |
+
p_before_embed = self.lm_model.get_input_embeddings()(p_before_tokens.input_ids.long()) # [1, 6, 4096]
|
112 |
+
p_after_embed = self.lm_model.get_input_embeddings()(p_after_tokens.input_ids.long()) # [1, 17, 4096]
|
113 |
+
# add 1 bos
|
114 |
+
wrapped_emb = torch.cat([bos_embeds, p_before_embed, each_img_embed[None], p_after_embed], dim=1) # [1, 87, 4096]
|
115 |
+
emb_lists.append(wrapped_emb)
|
116 |
+
|
117 |
+
image_mask.append( torch.tensor([0] * wrapped_emb.size(1)) )
|
118 |
+
image_mask[-1][range(bos_embeds.size(1) + p_before_embed.size(1),
|
119 |
+
bos_embeds.size(1) + p_before_embed.size(1) + len(each_img_embed))] = 1
|
120 |
+
assert image_mask[-1].sum() == each_img_embed.size(0)
|
121 |
+
|
122 |
+
emb_lens = [emb.shape[1] for emb in emb_lists]
|
123 |
+
pad_emb = self.lm_model.get_input_embeddings()(torch.tensor(self.lm_tokenizer.pad_token_id, device=img_embeds.device)) # [4096]
|
124 |
+
|
125 |
+
assert not self.training
|
126 |
+
# during inference mode, padding on the left
|
127 |
+
wrapped_embs = pad_emb.expand(len(emb_lens), max(emb_lens), -1).clone() # [12, 87, 4096]
|
128 |
+
wrapped_atts = torch.zeros([len(emb_lens), max(emb_lens)], dtype=torch.int, device=img_embeds.device) # [12, 87]
|
129 |
+
wrapped_image_masks = torch.zeros([len(emb_lens), max(emb_lens)], dtype=torch.int, device=img_embeds.device) # [12, 87]
|
130 |
+
for i, emb in enumerate(emb_lists):
|
131 |
+
wrapped_embs[i, -emb_lens[i]:] = emb
|
132 |
+
wrapped_atts[i, -emb_lens[i]:] = 1
|
133 |
+
wrapped_image_masks[i, -emb_lens[i]:] = image_mask[i]
|
134 |
+
return wrapped_embs, wrapped_atts, wrapped_image_masks
|
135 |
+
|
136 |
+
@torch.no_grad()
|
137 |
+
def forward_image_feature(self, image):
|
138 |
+
autocast = get_autocast(self.precision, cache_enabled=True)
|
139 |
+
with autocast():
|
140 |
+
if image.ndim == 4:
|
141 |
+
image = image.unsqueeze(1).unsqueeze(1)
|
142 |
+
assert image.ndim == 6
|
143 |
+
|
144 |
+
b, t, f = image.shape[:3]
|
145 |
+
assert t == 1 and f == 1
|
146 |
+
image = rearrange(image, "b t f c h w -> (b t f) c h w")
|
147 |
+
|
148 |
+
image_embeds = self.ln_vision(self.visual_encoder(image))
|
149 |
+
|
150 |
+
image_embeds = rearrange(image_embeds, "(b t f) L D -> b t f L D", t=t, f=f)
|
151 |
+
query_output= self.pooler(image_embeds)
|
152 |
+
query_output = query_output.squeeze(1)
|
153 |
+
embeds_img = self.llama_proj(query_output)
|
154 |
+
|
155 |
+
return embeds_img
|
156 |
+
|
157 |
+
@torch.no_grad()
|
158 |
+
def generate(
|
159 |
+
self,
|
160 |
+
samples,
|
161 |
+
use_nucleus_sampling=False,
|
162 |
+
num_beams=5,
|
163 |
+
max_length=30,
|
164 |
+
min_length=1,
|
165 |
+
top_p=0.9,
|
166 |
+
repetition_penalty=1.0,
|
167 |
+
length_penalty=1.0,
|
168 |
+
num_captions=1,
|
169 |
+
temperature=1,
|
170 |
+
):
|
171 |
+
autocast = get_autocast(self.precision, cache_enabled=True)
|
172 |
+
with autocast():
|
173 |
+
image = samples["image"]
|
174 |
+
embeds_img = self.forward_image_feature(image)
|
175 |
+
atts_img = torch.ones(embeds_img.size()[:-1], dtype=torch.long).to(image.device)
|
176 |
+
|
177 |
+
prompts = samples["prompts"]
|
178 |
+
assert isinstance(prompts, (tuple, list))
|
179 |
+
|
180 |
+
# Convert prompts to embeds and, repalce "<ImageHere>" with img_embeds
|
181 |
+
inputs_embeds, attention_mask, masks_img = self.prompt_wrap(embeds_img, atts_img, prompts)
|
182 |
+
|
183 |
+
model_args = dict(
|
184 |
+
inputs_embeds=inputs_embeds,
|
185 |
+
attention_mask=attention_mask,
|
186 |
+
do_sample=use_nucleus_sampling,
|
187 |
+
top_p=top_p,
|
188 |
+
temperature=temperature,
|
189 |
+
num_beams=num_beams,
|
190 |
+
max_length=max_length,
|
191 |
+
min_length=min_length,
|
192 |
+
eos_token_id=self.lm_tokenizer.eos_token_id,
|
193 |
+
repetition_penalty=repetition_penalty,
|
194 |
+
length_penalty=length_penalty,
|
195 |
+
num_return_sequences=num_captions,
|
196 |
+
)
|
197 |
+
outputs = self.lm_model.generate(**model_args)
|
198 |
+
|
199 |
+
output_text = self.lm_tokenizer.batch_decode(
|
200 |
+
outputs, skip_special_tokens=True
|
201 |
+
)
|
202 |
+
|
203 |
+
output_text = [text.strip() for text in output_text]
|
204 |
+
|
205 |
+
return output_text
|
206 |
+
|
207 |
+
@torch.no_grad()
|
208 |
+
def predict_answers(
|
209 |
+
self,
|
210 |
+
samples,
|
211 |
+
num_beams=5,
|
212 |
+
max_len=10,
|
213 |
+
min_len=1,
|
214 |
+
length_penalty=0,
|
215 |
+
):
|
216 |
+
# VQA tasks
|
217 |
+
autocast = get_autocast(self.precision, cache_enabled=True)
|
218 |
+
with autocast():
|
219 |
+
image = samples["image"]
|
220 |
+
embeds_img = self.forward_image_feature(image)
|
221 |
+
atts_img = torch.ones(embeds_img.size()[:-1], dtype=torch.long).to(image.device)
|
222 |
+
|
223 |
+
prompts = samples["prompts"]
|
224 |
+
assert isinstance(prompts, (tuple, list))
|
225 |
+
|
226 |
+
inputs_embeds, attention_mask, masks_img = self.prompt_wrap(embeds_img, atts_img, prompts)
|
227 |
+
|
228 |
+
model_args = dict(
|
229 |
+
inputs_embeds=inputs_embeds,
|
230 |
+
attention_mask=attention_mask,
|
231 |
+
do_sample=False,
|
232 |
+
num_beams=num_beams,
|
233 |
+
max_new_tokens=max_len,
|
234 |
+
min_length=min_len,
|
235 |
+
eos_token_id=self.lm_tokenizer.eos_token_id,
|
236 |
+
length_penalty=length_penalty
|
237 |
+
)
|
238 |
+
|
239 |
+
outputs = self.lm_model.generate(**model_args)
|
240 |
+
output_text = self.lm_tokenizer.batch_decode(
|
241 |
+
outputs, skip_special_tokens=True
|
242 |
+
)
|
243 |
+
output_text = [text.strip() for text in output_text]
|
244 |
+
|
245 |
+
if self._apply_lemmatizer or ("apply_lemmatizer" in samples.keys() and samples["apply_lemmatizer"]):
|
246 |
+
output_text = self._lemmatize(output_text)
|
247 |
+
|
248 |
+
return output_text
|
249 |
+
|
250 |
+
def _lemmatize(self, answers):
|
251 |
+
def apply(answer):
|
252 |
+
doc = self.lemmatizer(answer)
|
253 |
+
|
254 |
+
words = []
|
255 |
+
for token in doc:
|
256 |
+
if token.pos_ in ["NOUN", "VERB"]:
|
257 |
+
words.append(token.lemma_)
|
258 |
+
else:
|
259 |
+
words.append(token.text)
|
260 |
+
answer = " ".join(words)
|
261 |
+
|
262 |
+
return answer
|
263 |
+
|
264 |
+
return [apply(answer) for answer in answers]
|
265 |
+
|
266 |
+
@property
|
267 |
+
def lemmatizer(self):
|
268 |
+
if self._lemmatizer is None:
|
269 |
+
try:
|
270 |
+
import spacy
|
271 |
+
|
272 |
+
self._lemmatizer = spacy.load("en_core_web_sm")
|
273 |
+
except ImportError:
|
274 |
+
logging.error(
|
275 |
+
"""
|
276 |
+
Please install spacy and en_core_web_sm model to apply lemmatization.
|
277 |
+
python -m spacy download en_core_web_sm
|
278 |
+
OR
|
279 |
+
import spacy.cli
|
280 |
+
spacy.cli.download("en_core_web_sm")
|
281 |
+
"""
|
282 |
+
)
|
283 |
+
exit(1)
|
284 |
+
|
285 |
+
return self._lemmatizer
|
286 |
+
|
pooler.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import math
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
|
6 |
+
|
7 |
+
class Pooler(nn.Module):
|
8 |
+
def __init__(self, dim_in, dim_out, pool_out_size):
|
9 |
+
super().__init__()
|
10 |
+
if not isinstance(pool_out_size, (list, tuple)):
|
11 |
+
pool_out_size = [pool_out_size]
|
12 |
+
|
13 |
+
self.pool_out_size = pool_out_size
|
14 |
+
print("pool_out_size: {}".format(self.pool_out_size))
|
15 |
+
|
16 |
+
self.mlp = nn.Sequential(
|
17 |
+
nn.Linear(dim_in, dim_out),
|
18 |
+
nn.GELU(),
|
19 |
+
nn.Linear(dim_out, dim_out)
|
20 |
+
)
|
21 |
+
|
22 |
+
def forward(self, x):
|
23 |
+
"""
|
24 |
+
Args:
|
25 |
+
x (torch.Tensor): image features
|
26 |
+
shape (b, T, F, v, D)
|
27 |
+
Returns:
|
28 |
+
shape (b, T, n, D) where n is self.num_latents
|
29 |
+
"""
|
30 |
+
b, t, f, v, d = x.shape
|
31 |
+
s = int(math.sqrt(v -1))
|
32 |
+
assert t == 1 and f == 1
|
33 |
+
x = x[:, :, :, 1:, :] # remove cls_token
|
34 |
+
x_in = x.reshape(b, t, f, s, s, d)
|
35 |
+
|
36 |
+
pool_out_size = random.choice(self.pool_out_size)
|
37 |
+
if '+' in pool_out_size: # "16+32" means ensemble the pool size of 16 and 32
|
38 |
+
pool_out_size_list = [int(p) for p in pool_out_size.split('+')]
|
39 |
+
else:
|
40 |
+
pool_out_size_list = [int(pool_out_size)]
|
41 |
+
pool_out_size_list.sort(reverse=True)
|
42 |
+
|
43 |
+
x_out = []
|
44 |
+
for pool_out_size in pool_out_size_list:
|
45 |
+
x = x_in.reshape(b, t, f, pool_out_size, s//pool_out_size, pool_out_size, s//pool_out_size, d)
|
46 |
+
x = x.permute([0, 1, 2, 3, 5, 7, 4, 6]).reshape(b, t, f, pool_out_size * pool_out_size, d, -1).mean(-1)
|
47 |
+
x = self.mlp(x) # [b, t, f, h*w, d]
|
48 |
+
x = x.flatten(0, 2)
|
49 |
+
x_out.append(x)
|
50 |
+
x_out = torch.cat(x_out, dim=-2)
|
51 |
+
|
52 |
+
return x_out.unsqueeze(1)
|
pytorch_model-00001-of-00002.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2e1fa471368d11c9f444934720fd79728d675785b1c9a588e4e01b9522bc825d
|
3 |
+
size 9977684261
|
pytorch_model-00002-of-00002.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2bb0713b724187521e4fd37143e7c0e42a108dbec5a04f6405a37e404a24fcdf
|
3 |
+
size 7537569555
|
pytorch_model.bin.index.json
ADDED
@@ -0,0 +1,847 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 17514964480
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_model.lm_head.weight": "pytorch_model-00002-of-00002.bin",
|
7 |
+
"lm_model.model.embed_tokens.weight": "pytorch_model-00001-of-00002.bin",
|
8 |
+
"lm_model.model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
9 |
+
"lm_model.model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
10 |
+
"lm_model.model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
11 |
+
"lm_model.model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
12 |
+
"lm_model.model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
13 |
+
"lm_model.model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
14 |
+
"lm_model.model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
15 |
+
"lm_model.model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
16 |
+
"lm_model.model.layers.0.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
17 |
+
"lm_model.model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
18 |
+
"lm_model.model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
19 |
+
"lm_model.model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
20 |
+
"lm_model.model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
21 |
+
"lm_model.model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
22 |
+
"lm_model.model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
23 |
+
"lm_model.model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
24 |
+
"lm_model.model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
25 |
+
"lm_model.model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
26 |
+
"lm_model.model.layers.1.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
27 |
+
"lm_model.model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
28 |
+
"lm_model.model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
29 |
+
"lm_model.model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
30 |
+
"lm_model.model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
31 |
+
"lm_model.model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
32 |
+
"lm_model.model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
33 |
+
"lm_model.model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
34 |
+
"lm_model.model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
35 |
+
"lm_model.model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
36 |
+
"lm_model.model.layers.10.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
37 |
+
"lm_model.model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
38 |
+
"lm_model.model.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
39 |
+
"lm_model.model.layers.11.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
40 |
+
"lm_model.model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
41 |
+
"lm_model.model.layers.11.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
42 |
+
"lm_model.model.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
43 |
+
"lm_model.model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
44 |
+
"lm_model.model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
45 |
+
"lm_model.model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
46 |
+
"lm_model.model.layers.11.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
47 |
+
"lm_model.model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
48 |
+
"lm_model.model.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
49 |
+
"lm_model.model.layers.12.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
50 |
+
"lm_model.model.layers.12.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
51 |
+
"lm_model.model.layers.12.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
52 |
+
"lm_model.model.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
53 |
+
"lm_model.model.layers.12.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
54 |
+
"lm_model.model.layers.12.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
55 |
+
"lm_model.model.layers.12.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
56 |
+
"lm_model.model.layers.12.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
57 |
+
"lm_model.model.layers.12.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
58 |
+
"lm_model.model.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
59 |
+
"lm_model.model.layers.13.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
60 |
+
"lm_model.model.layers.13.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
61 |
+
"lm_model.model.layers.13.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
62 |
+
"lm_model.model.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
63 |
+
"lm_model.model.layers.13.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
64 |
+
"lm_model.model.layers.13.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
65 |
+
"lm_model.model.layers.13.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
66 |
+
"lm_model.model.layers.13.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
67 |
+
"lm_model.model.layers.13.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
68 |
+
"lm_model.model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
69 |
+
"lm_model.model.layers.14.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
70 |
+
"lm_model.model.layers.14.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
71 |
+
"lm_model.model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
72 |
+
"lm_model.model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
73 |
+
"lm_model.model.layers.14.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
74 |
+
"lm_model.model.layers.14.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
75 |
+
"lm_model.model.layers.14.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
76 |
+
"lm_model.model.layers.14.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
77 |
+
"lm_model.model.layers.14.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
78 |
+
"lm_model.model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
79 |
+
"lm_model.model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
80 |
+
"lm_model.model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
81 |
+
"lm_model.model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
82 |
+
"lm_model.model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
83 |
+
"lm_model.model.layers.15.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
84 |
+
"lm_model.model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
85 |
+
"lm_model.model.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
86 |
+
"lm_model.model.layers.15.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
87 |
+
"lm_model.model.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
88 |
+
"lm_model.model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
89 |
+
"lm_model.model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
90 |
+
"lm_model.model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
91 |
+
"lm_model.model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
92 |
+
"lm_model.model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
93 |
+
"lm_model.model.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
94 |
+
"lm_model.model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
95 |
+
"lm_model.model.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
96 |
+
"lm_model.model.layers.16.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
97 |
+
"lm_model.model.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
98 |
+
"lm_model.model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
99 |
+
"lm_model.model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
100 |
+
"lm_model.model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
101 |
+
"lm_model.model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
102 |
+
"lm_model.model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
103 |
+
"lm_model.model.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
104 |
+
"lm_model.model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
105 |
+
"lm_model.model.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
106 |
+
"lm_model.model.layers.17.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
107 |
+
"lm_model.model.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
108 |
+
"lm_model.model.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
109 |
+
"lm_model.model.layers.18.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
110 |
+
"lm_model.model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
111 |
+
"lm_model.model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
112 |
+
"lm_model.model.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
113 |
+
"lm_model.model.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
114 |
+
"lm_model.model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
115 |
+
"lm_model.model.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
116 |
+
"lm_model.model.layers.18.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
117 |
+
"lm_model.model.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
118 |
+
"lm_model.model.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
119 |
+
"lm_model.model.layers.19.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
120 |
+
"lm_model.model.layers.19.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
121 |
+
"lm_model.model.layers.19.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
122 |
+
"lm_model.model.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
123 |
+
"lm_model.model.layers.19.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
124 |
+
"lm_model.model.layers.19.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
125 |
+
"lm_model.model.layers.19.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
126 |
+
"lm_model.model.layers.19.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
127 |
+
"lm_model.model.layers.19.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
128 |
+
"lm_model.model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
129 |
+
"lm_model.model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
130 |
+
"lm_model.model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
131 |
+
"lm_model.model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
132 |
+
"lm_model.model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
133 |
+
"lm_model.model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
134 |
+
"lm_model.model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
135 |
+
"lm_model.model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
136 |
+
"lm_model.model.layers.2.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
137 |
+
"lm_model.model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
138 |
+
"lm_model.model.layers.20.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
139 |
+
"lm_model.model.layers.20.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
140 |
+
"lm_model.model.layers.20.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
141 |
+
"lm_model.model.layers.20.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
142 |
+
"lm_model.model.layers.20.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
143 |
+
"lm_model.model.layers.20.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
144 |
+
"lm_model.model.layers.20.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
145 |
+
"lm_model.model.layers.20.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
146 |
+
"lm_model.model.layers.20.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
147 |
+
"lm_model.model.layers.20.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
148 |
+
"lm_model.model.layers.21.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
149 |
+
"lm_model.model.layers.21.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
150 |
+
"lm_model.model.layers.21.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
151 |
+
"lm_model.model.layers.21.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
152 |
+
"lm_model.model.layers.21.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
153 |
+
"lm_model.model.layers.21.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
154 |
+
"lm_model.model.layers.21.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
155 |
+
"lm_model.model.layers.21.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
156 |
+
"lm_model.model.layers.21.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
157 |
+
"lm_model.model.layers.21.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
158 |
+
"lm_model.model.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
159 |
+
"lm_model.model.layers.22.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
160 |
+
"lm_model.model.layers.22.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
161 |
+
"lm_model.model.layers.22.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
162 |
+
"lm_model.model.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
163 |
+
"lm_model.model.layers.22.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
164 |
+
"lm_model.model.layers.22.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
165 |
+
"lm_model.model.layers.22.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
166 |
+
"lm_model.model.layers.22.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
167 |
+
"lm_model.model.layers.22.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
168 |
+
"lm_model.model.layers.23.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
169 |
+
"lm_model.model.layers.23.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
170 |
+
"lm_model.model.layers.23.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
171 |
+
"lm_model.model.layers.23.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
172 |
+
"lm_model.model.layers.23.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
173 |
+
"lm_model.model.layers.23.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
174 |
+
"lm_model.model.layers.23.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
175 |
+
"lm_model.model.layers.23.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
176 |
+
"lm_model.model.layers.23.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
177 |
+
"lm_model.model.layers.23.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
178 |
+
"lm_model.model.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
179 |
+
"lm_model.model.layers.24.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
180 |
+
"lm_model.model.layers.24.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
181 |
+
"lm_model.model.layers.24.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
182 |
+
"lm_model.model.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
183 |
+
"lm_model.model.layers.24.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
184 |
+
"lm_model.model.layers.24.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
185 |
+
"lm_model.model.layers.24.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
186 |
+
"lm_model.model.layers.24.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
187 |
+
"lm_model.model.layers.24.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
188 |
+
"lm_model.model.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
189 |
+
"lm_model.model.layers.25.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
190 |
+
"lm_model.model.layers.25.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
191 |
+
"lm_model.model.layers.25.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
192 |
+
"lm_model.model.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
193 |
+
"lm_model.model.layers.25.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
194 |
+
"lm_model.model.layers.25.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
195 |
+
"lm_model.model.layers.25.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
196 |
+
"lm_model.model.layers.25.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
197 |
+
"lm_model.model.layers.25.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
198 |
+
"lm_model.model.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
199 |
+
"lm_model.model.layers.26.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
200 |
+
"lm_model.model.layers.26.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
201 |
+
"lm_model.model.layers.26.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
202 |
+
"lm_model.model.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
203 |
+
"lm_model.model.layers.26.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
204 |
+
"lm_model.model.layers.26.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
205 |
+
"lm_model.model.layers.26.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
206 |
+
"lm_model.model.layers.26.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
207 |
+
"lm_model.model.layers.26.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
208 |
+
"lm_model.model.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
209 |
+
"lm_model.model.layers.27.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
210 |
+
"lm_model.model.layers.27.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
211 |
+
"lm_model.model.layers.27.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
212 |
+
"lm_model.model.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
213 |
+
"lm_model.model.layers.27.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
214 |
+
"lm_model.model.layers.27.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
215 |
+
"lm_model.model.layers.27.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
216 |
+
"lm_model.model.layers.27.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
217 |
+
"lm_model.model.layers.27.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
218 |
+
"lm_model.model.layers.28.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
219 |
+
"lm_model.model.layers.28.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
220 |
+
"lm_model.model.layers.28.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
221 |
+
"lm_model.model.layers.28.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
222 |
+
"lm_model.model.layers.28.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
223 |
+
"lm_model.model.layers.28.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
224 |
+
"lm_model.model.layers.28.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
225 |
+
"lm_model.model.layers.28.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
226 |
+
"lm_model.model.layers.28.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
227 |
+
"lm_model.model.layers.28.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
228 |
+
"lm_model.model.layers.29.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
229 |
+
"lm_model.model.layers.29.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
230 |
+
"lm_model.model.layers.29.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
231 |
+
"lm_model.model.layers.29.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
232 |
+
"lm_model.model.layers.29.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
233 |
+
"lm_model.model.layers.29.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
234 |
+
"lm_model.model.layers.29.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
235 |
+
"lm_model.model.layers.29.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
236 |
+
"lm_model.model.layers.29.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
237 |
+
"lm_model.model.layers.29.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
238 |
+
"lm_model.model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
239 |
+
"lm_model.model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
240 |
+
"lm_model.model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
241 |
+
"lm_model.model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
242 |
+
"lm_model.model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
243 |
+
"lm_model.model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
244 |
+
"lm_model.model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
245 |
+
"lm_model.model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
246 |
+
"lm_model.model.layers.3.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
247 |
+
"lm_model.model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
248 |
+
"lm_model.model.layers.30.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
249 |
+
"lm_model.model.layers.30.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
250 |
+
"lm_model.model.layers.30.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
251 |
+
"lm_model.model.layers.30.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
252 |
+
"lm_model.model.layers.30.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
253 |
+
"lm_model.model.layers.30.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
254 |
+
"lm_model.model.layers.30.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
255 |
+
"lm_model.model.layers.30.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
256 |
+
"lm_model.model.layers.30.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
257 |
+
"lm_model.model.layers.30.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
258 |
+
"lm_model.model.layers.31.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
259 |
+
"lm_model.model.layers.31.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
|
260 |
+
"lm_model.model.layers.31.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
|
261 |
+
"lm_model.model.layers.31.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
|
262 |
+
"lm_model.model.layers.31.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
|
263 |
+
"lm_model.model.layers.31.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
|
264 |
+
"lm_model.model.layers.31.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
|
265 |
+
"lm_model.model.layers.31.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
|
266 |
+
"lm_model.model.layers.31.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
|
267 |
+
"lm_model.model.layers.31.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
|
268 |
+
"lm_model.model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
269 |
+
"lm_model.model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
270 |
+
"lm_model.model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
271 |
+
"lm_model.model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
272 |
+
"lm_model.model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
273 |
+
"lm_model.model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
274 |
+
"lm_model.model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
275 |
+
"lm_model.model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
276 |
+
"lm_model.model.layers.4.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
277 |
+
"lm_model.model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
278 |
+
"lm_model.model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
279 |
+
"lm_model.model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
280 |
+
"lm_model.model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
281 |
+
"lm_model.model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
282 |
+
"lm_model.model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
283 |
+
"lm_model.model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
284 |
+
"lm_model.model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
285 |
+
"lm_model.model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
286 |
+
"lm_model.model.layers.5.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
287 |
+
"lm_model.model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
288 |
+
"lm_model.model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
289 |
+
"lm_model.model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
290 |
+
"lm_model.model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
291 |
+
"lm_model.model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
292 |
+
"lm_model.model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
293 |
+
"lm_model.model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
294 |
+
"lm_model.model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
295 |
+
"lm_model.model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
296 |
+
"lm_model.model.layers.6.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
297 |
+
"lm_model.model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
298 |
+
"lm_model.model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
299 |
+
"lm_model.model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
300 |
+
"lm_model.model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
301 |
+
"lm_model.model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
302 |
+
"lm_model.model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
303 |
+
"lm_model.model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
304 |
+
"lm_model.model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
305 |
+
"lm_model.model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
306 |
+
"lm_model.model.layers.7.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
307 |
+
"lm_model.model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
308 |
+
"lm_model.model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
309 |
+
"lm_model.model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
310 |
+
"lm_model.model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
311 |
+
"lm_model.model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
312 |
+
"lm_model.model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
313 |
+
"lm_model.model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
314 |
+
"lm_model.model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
315 |
+
"lm_model.model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
316 |
+
"lm_model.model.layers.8.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
317 |
+
"lm_model.model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
318 |
+
"lm_model.model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
319 |
+
"lm_model.model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
|
320 |
+
"lm_model.model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
|
321 |
+
"lm_model.model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
|
322 |
+
"lm_model.model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
|
323 |
+
"lm_model.model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
|
324 |
+
"lm_model.model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
|
325 |
+
"lm_model.model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
|
326 |
+
"lm_model.model.layers.9.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
|
327 |
+
"lm_model.model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
|
328 |
+
"lm_model.model.norm.weight": "pytorch_model-00002-of-00002.bin",
|
329 |
+
"ln_vision.bias": "pytorch_model-00001-of-00002.bin",
|
330 |
+
"ln_vision.weight": "pytorch_model-00001-of-00002.bin",
|
331 |
+
"pooler.mlp.0.bias": "pytorch_model-00002-of-00002.bin",
|
332 |
+
"pooler.mlp.0.weight": "pytorch_model-00002-of-00002.bin",
|
333 |
+
"pooler.mlp.2.bias": "pytorch_model-00002-of-00002.bin",
|
334 |
+
"pooler.mlp.2.weight": "pytorch_model-00002-of-00002.bin",
|
335 |
+
"visual_encoder.blocks.0.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
336 |
+
"visual_encoder.blocks.0.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
337 |
+
"visual_encoder.blocks.0.attn.q_bias": "pytorch_model-00001-of-00002.bin",
|
338 |
+
"visual_encoder.blocks.0.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
339 |
+
"visual_encoder.blocks.0.attn.v_bias": "pytorch_model-00001-of-00002.bin",
|
340 |
+
"visual_encoder.blocks.0.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
341 |
+
"visual_encoder.blocks.0.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
342 |
+
"visual_encoder.blocks.0.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
343 |
+
"visual_encoder.blocks.0.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
344 |
+
"visual_encoder.blocks.0.norm1.bias": "pytorch_model-00001-of-00002.bin",
|
345 |
+
"visual_encoder.blocks.0.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
346 |
+
"visual_encoder.blocks.0.norm2.bias": "pytorch_model-00001-of-00002.bin",
|
347 |
+
"visual_encoder.blocks.0.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
348 |
+
"visual_encoder.blocks.1.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
349 |
+
"visual_encoder.blocks.1.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
350 |
+
"visual_encoder.blocks.1.attn.q_bias": "pytorch_model-00001-of-00002.bin",
|
351 |
+
"visual_encoder.blocks.1.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
352 |
+
"visual_encoder.blocks.1.attn.v_bias": "pytorch_model-00001-of-00002.bin",
|
353 |
+
"visual_encoder.blocks.1.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
354 |
+
"visual_encoder.blocks.1.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
355 |
+
"visual_encoder.blocks.1.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
356 |
+
"visual_encoder.blocks.1.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
357 |
+
"visual_encoder.blocks.1.norm1.bias": "pytorch_model-00001-of-00002.bin",
|
358 |
+
"visual_encoder.blocks.1.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
359 |
+
"visual_encoder.blocks.1.norm2.bias": "pytorch_model-00001-of-00002.bin",
|
360 |
+
"visual_encoder.blocks.1.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
361 |
+
"visual_encoder.blocks.10.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
362 |
+
"visual_encoder.blocks.10.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
363 |
+
"visual_encoder.blocks.10.attn.q_bias": "pytorch_model-00001-of-00002.bin",
|
364 |
+
"visual_encoder.blocks.10.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
365 |
+
"visual_encoder.blocks.10.attn.v_bias": "pytorch_model-00001-of-00002.bin",
|
366 |
+
"visual_encoder.blocks.10.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
367 |
+
"visual_encoder.blocks.10.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
368 |
+
"visual_encoder.blocks.10.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
369 |
+
"visual_encoder.blocks.10.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
370 |
+
"visual_encoder.blocks.10.norm1.bias": "pytorch_model-00001-of-00002.bin",
|
371 |
+
"visual_encoder.blocks.10.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
372 |
+
"visual_encoder.blocks.10.norm2.bias": "pytorch_model-00001-of-00002.bin",
|
373 |
+
"visual_encoder.blocks.10.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
374 |
+
"visual_encoder.blocks.11.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
375 |
+
"visual_encoder.blocks.11.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
376 |
+
"visual_encoder.blocks.11.attn.q_bias": "pytorch_model-00001-of-00002.bin",
|
377 |
+
"visual_encoder.blocks.11.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
378 |
+
"visual_encoder.blocks.11.attn.v_bias": "pytorch_model-00001-of-00002.bin",
|
379 |
+
"visual_encoder.blocks.11.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
380 |
+
"visual_encoder.blocks.11.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
381 |
+
"visual_encoder.blocks.11.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
382 |
+
"visual_encoder.blocks.11.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
383 |
+
"visual_encoder.blocks.11.norm1.bias": "pytorch_model-00001-of-00002.bin",
|
384 |
+
"visual_encoder.blocks.11.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
385 |
+
"visual_encoder.blocks.11.norm2.bias": "pytorch_model-00001-of-00002.bin",
|
386 |
+
"visual_encoder.blocks.11.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
387 |
+
"visual_encoder.blocks.12.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
388 |
+
"visual_encoder.blocks.12.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
389 |
+
"visual_encoder.blocks.12.attn.q_bias": "pytorch_model-00001-of-00002.bin",
|
390 |
+
"visual_encoder.blocks.12.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
391 |
+
"visual_encoder.blocks.12.attn.v_bias": "pytorch_model-00001-of-00002.bin",
|
392 |
+
"visual_encoder.blocks.12.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
393 |
+
"visual_encoder.blocks.12.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
394 |
+
"visual_encoder.blocks.12.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
395 |
+
"visual_encoder.blocks.12.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
396 |
+
"visual_encoder.blocks.12.norm1.bias": "pytorch_model-00001-of-00002.bin",
|
397 |
+
"visual_encoder.blocks.12.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
398 |
+
"visual_encoder.blocks.12.norm2.bias": "pytorch_model-00001-of-00002.bin",
|
399 |
+
"visual_encoder.blocks.12.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
400 |
+
"visual_encoder.blocks.13.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
401 |
+
"visual_encoder.blocks.13.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
402 |
+
"visual_encoder.blocks.13.attn.q_bias": "pytorch_model-00001-of-00002.bin",
|
403 |
+
"visual_encoder.blocks.13.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
404 |
+
"visual_encoder.blocks.13.attn.v_bias": "pytorch_model-00001-of-00002.bin",
|
405 |
+
"visual_encoder.blocks.13.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
406 |
+
"visual_encoder.blocks.13.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
407 |
+
"visual_encoder.blocks.13.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
408 |
+
"visual_encoder.blocks.13.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
409 |
+
"visual_encoder.blocks.13.norm1.bias": "pytorch_model-00001-of-00002.bin",
|
410 |
+
"visual_encoder.blocks.13.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
411 |
+
"visual_encoder.blocks.13.norm2.bias": "pytorch_model-00001-of-00002.bin",
|
412 |
+
"visual_encoder.blocks.13.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
413 |
+
"visual_encoder.blocks.14.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
414 |
+
"visual_encoder.blocks.14.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
415 |
+
"visual_encoder.blocks.14.attn.q_bias": "pytorch_model-00001-of-00002.bin",
|
416 |
+
"visual_encoder.blocks.14.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
417 |
+
"visual_encoder.blocks.14.attn.v_bias": "pytorch_model-00001-of-00002.bin",
|
418 |
+
"visual_encoder.blocks.14.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
419 |
+
"visual_encoder.blocks.14.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
420 |
+
"visual_encoder.blocks.14.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
421 |
+
"visual_encoder.blocks.14.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
422 |
+
"visual_encoder.blocks.14.norm1.bias": "pytorch_model-00001-of-00002.bin",
|
423 |
+
"visual_encoder.blocks.14.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
424 |
+
"visual_encoder.blocks.14.norm2.bias": "pytorch_model-00001-of-00002.bin",
|
425 |
+
"visual_encoder.blocks.14.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
426 |
+
"visual_encoder.blocks.15.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
427 |
+
"visual_encoder.blocks.15.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
428 |
+
"visual_encoder.blocks.15.attn.q_bias": "pytorch_model-00001-of-00002.bin",
|
429 |
+
"visual_encoder.blocks.15.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
430 |
+
"visual_encoder.blocks.15.attn.v_bias": "pytorch_model-00001-of-00002.bin",
|
431 |
+
"visual_encoder.blocks.15.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
432 |
+
"visual_encoder.blocks.15.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
433 |
+
"visual_encoder.blocks.15.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
434 |
+
"visual_encoder.blocks.15.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
435 |
+
"visual_encoder.blocks.15.norm1.bias": "pytorch_model-00001-of-00002.bin",
|
436 |
+
"visual_encoder.blocks.15.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
437 |
+
"visual_encoder.blocks.15.norm2.bias": "pytorch_model-00001-of-00002.bin",
|
438 |
+
"visual_encoder.blocks.15.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
439 |
+
"visual_encoder.blocks.16.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
440 |
+
"visual_encoder.blocks.16.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
441 |
+
"visual_encoder.blocks.16.attn.q_bias": "pytorch_model-00001-of-00002.bin",
|
442 |
+
"visual_encoder.blocks.16.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
443 |
+
"visual_encoder.blocks.16.attn.v_bias": "pytorch_model-00001-of-00002.bin",
|
444 |
+
"visual_encoder.blocks.16.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
445 |
+
"visual_encoder.blocks.16.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
446 |
+
"visual_encoder.blocks.16.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
447 |
+
"visual_encoder.blocks.16.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
448 |
+
"visual_encoder.blocks.16.norm1.bias": "pytorch_model-00001-of-00002.bin",
|
449 |
+
"visual_encoder.blocks.16.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
450 |
+
"visual_encoder.blocks.16.norm2.bias": "pytorch_model-00001-of-00002.bin",
|
451 |
+
"visual_encoder.blocks.16.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
452 |
+
"visual_encoder.blocks.17.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
453 |
+
"visual_encoder.blocks.17.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
454 |
+
"visual_encoder.blocks.17.attn.q_bias": "pytorch_model-00001-of-00002.bin",
|
455 |
+
"visual_encoder.blocks.17.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
456 |
+
"visual_encoder.blocks.17.attn.v_bias": "pytorch_model-00001-of-00002.bin",
|
457 |
+
"visual_encoder.blocks.17.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
458 |
+
"visual_encoder.blocks.17.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
459 |
+
"visual_encoder.blocks.17.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
460 |
+
"visual_encoder.blocks.17.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
461 |
+
"visual_encoder.blocks.17.norm1.bias": "pytorch_model-00001-of-00002.bin",
|
462 |
+
"visual_encoder.blocks.17.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
463 |
+
"visual_encoder.blocks.17.norm2.bias": "pytorch_model-00001-of-00002.bin",
|
464 |
+
"visual_encoder.blocks.17.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
465 |
+
"visual_encoder.blocks.18.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
466 |
+
"visual_encoder.blocks.18.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
467 |
+
"visual_encoder.blocks.18.attn.q_bias": "pytorch_model-00001-of-00002.bin",
|
468 |
+
"visual_encoder.blocks.18.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
469 |
+
"visual_encoder.blocks.18.attn.v_bias": "pytorch_model-00001-of-00002.bin",
|
470 |
+
"visual_encoder.blocks.18.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
471 |
+
"visual_encoder.blocks.18.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
472 |
+
"visual_encoder.blocks.18.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
473 |
+
"visual_encoder.blocks.18.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
474 |
+
"visual_encoder.blocks.18.norm1.bias": "pytorch_model-00001-of-00002.bin",
|
475 |
+
"visual_encoder.blocks.18.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
476 |
+
"visual_encoder.blocks.18.norm2.bias": "pytorch_model-00001-of-00002.bin",
|
477 |
+
"visual_encoder.blocks.18.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
478 |
+
"visual_encoder.blocks.19.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
479 |
+
"visual_encoder.blocks.19.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
480 |
+
"visual_encoder.blocks.19.attn.q_bias": "pytorch_model-00001-of-00002.bin",
|
481 |
+
"visual_encoder.blocks.19.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
482 |
+
"visual_encoder.blocks.19.attn.v_bias": "pytorch_model-00001-of-00002.bin",
|
483 |
+
"visual_encoder.blocks.19.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
484 |
+
"visual_encoder.blocks.19.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
485 |
+
"visual_encoder.blocks.19.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
486 |
+
"visual_encoder.blocks.19.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
487 |
+
"visual_encoder.blocks.19.norm1.bias": "pytorch_model-00001-of-00002.bin",
|
488 |
+
"visual_encoder.blocks.19.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
489 |
+
"visual_encoder.blocks.19.norm2.bias": "pytorch_model-00001-of-00002.bin",
|
490 |
+
"visual_encoder.blocks.19.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
491 |
+
"visual_encoder.blocks.2.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
492 |
+
"visual_encoder.blocks.2.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
493 |
+
"visual_encoder.blocks.2.attn.q_bias": "pytorch_model-00001-of-00002.bin",
|
494 |
+
"visual_encoder.blocks.2.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
495 |
+
"visual_encoder.blocks.2.attn.v_bias": "pytorch_model-00001-of-00002.bin",
|
496 |
+
"visual_encoder.blocks.2.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
497 |
+
"visual_encoder.blocks.2.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
498 |
+
"visual_encoder.blocks.2.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
499 |
+
"visual_encoder.blocks.2.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
500 |
+
"visual_encoder.blocks.2.norm1.bias": "pytorch_model-00001-of-00002.bin",
|
501 |
+
"visual_encoder.blocks.2.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
502 |
+
"visual_encoder.blocks.2.norm2.bias": "pytorch_model-00001-of-00002.bin",
|
503 |
+
"visual_encoder.blocks.2.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
504 |
+
"visual_encoder.blocks.20.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
505 |
+
"visual_encoder.blocks.20.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
506 |
+
"visual_encoder.blocks.20.attn.q_bias": "pytorch_model-00001-of-00002.bin",
|
507 |
+
"visual_encoder.blocks.20.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
508 |
+
"visual_encoder.blocks.20.attn.v_bias": "pytorch_model-00001-of-00002.bin",
|
509 |
+
"visual_encoder.blocks.20.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
510 |
+
"visual_encoder.blocks.20.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
511 |
+
"visual_encoder.blocks.20.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
512 |
+
"visual_encoder.blocks.20.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
513 |
+
"visual_encoder.blocks.20.norm1.bias": "pytorch_model-00001-of-00002.bin",
|
514 |
+
"visual_encoder.blocks.20.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
515 |
+
"visual_encoder.blocks.20.norm2.bias": "pytorch_model-00001-of-00002.bin",
|
516 |
+
"visual_encoder.blocks.20.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
517 |
+
"visual_encoder.blocks.21.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
518 |
+
"visual_encoder.blocks.21.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
519 |
+
"visual_encoder.blocks.21.attn.q_bias": "pytorch_model-00001-of-00002.bin",
|
520 |
+
"visual_encoder.blocks.21.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
521 |
+
"visual_encoder.blocks.21.attn.v_bias": "pytorch_model-00001-of-00002.bin",
|
522 |
+
"visual_encoder.blocks.21.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
523 |
+
"visual_encoder.blocks.21.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
524 |
+
"visual_encoder.blocks.21.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
525 |
+
"visual_encoder.blocks.21.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
526 |
+
"visual_encoder.blocks.21.norm1.bias": "pytorch_model-00001-of-00002.bin",
|
527 |
+
"visual_encoder.blocks.21.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
528 |
+
"visual_encoder.blocks.21.norm2.bias": "pytorch_model-00001-of-00002.bin",
|
529 |
+
"visual_encoder.blocks.21.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
530 |
+
"visual_encoder.blocks.22.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
531 |
+
"visual_encoder.blocks.22.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
532 |
+
"visual_encoder.blocks.22.attn.q_bias": "pytorch_model-00001-of-00002.bin",
|
533 |
+
"visual_encoder.blocks.22.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
534 |
+
"visual_encoder.blocks.22.attn.v_bias": "pytorch_model-00001-of-00002.bin",
|
535 |
+
"visual_encoder.blocks.22.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
536 |
+
"visual_encoder.blocks.22.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
537 |
+
"visual_encoder.blocks.22.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
538 |
+
"visual_encoder.blocks.22.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
539 |
+
"visual_encoder.blocks.22.norm1.bias": "pytorch_model-00001-of-00002.bin",
|
540 |
+
"visual_encoder.blocks.22.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
541 |
+
"visual_encoder.blocks.22.norm2.bias": "pytorch_model-00001-of-00002.bin",
|
542 |
+
"visual_encoder.blocks.22.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
543 |
+
"visual_encoder.blocks.23.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
544 |
+
"visual_encoder.blocks.23.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
545 |
+
"visual_encoder.blocks.23.attn.q_bias": "pytorch_model-00001-of-00002.bin",
|
546 |
+
"visual_encoder.blocks.23.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
547 |
+
"visual_encoder.blocks.23.attn.v_bias": "pytorch_model-00001-of-00002.bin",
|
548 |
+
"visual_encoder.blocks.23.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
549 |
+
"visual_encoder.blocks.23.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
550 |
+
"visual_encoder.blocks.23.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
551 |
+
"visual_encoder.blocks.23.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
552 |
+
"visual_encoder.blocks.23.norm1.bias": "pytorch_model-00001-of-00002.bin",
|
553 |
+
"visual_encoder.blocks.23.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
554 |
+
"visual_encoder.blocks.23.norm2.bias": "pytorch_model-00001-of-00002.bin",
|
555 |
+
"visual_encoder.blocks.23.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
556 |
+
"visual_encoder.blocks.24.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
557 |
+
"visual_encoder.blocks.24.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
558 |
+
"visual_encoder.blocks.24.attn.q_bias": "pytorch_model-00001-of-00002.bin",
|
559 |
+
"visual_encoder.blocks.24.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
560 |
+
"visual_encoder.blocks.24.attn.v_bias": "pytorch_model-00001-of-00002.bin",
|
561 |
+
"visual_encoder.blocks.24.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
562 |
+
"visual_encoder.blocks.24.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
563 |
+
"visual_encoder.blocks.24.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
564 |
+
"visual_encoder.blocks.24.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
565 |
+
"visual_encoder.blocks.24.norm1.bias": "pytorch_model-00001-of-00002.bin",
|
566 |
+
"visual_encoder.blocks.24.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
567 |
+
"visual_encoder.blocks.24.norm2.bias": "pytorch_model-00001-of-00002.bin",
|
568 |
+
"visual_encoder.blocks.24.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
569 |
+
"visual_encoder.blocks.25.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
570 |
+
"visual_encoder.blocks.25.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
571 |
+
"visual_encoder.blocks.25.attn.q_bias": "pytorch_model-00001-of-00002.bin",
|
572 |
+
"visual_encoder.blocks.25.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
573 |
+
"visual_encoder.blocks.25.attn.v_bias": "pytorch_model-00001-of-00002.bin",
|
574 |
+
"visual_encoder.blocks.25.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
575 |
+
"visual_encoder.blocks.25.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
576 |
+
"visual_encoder.blocks.25.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
577 |
+
"visual_encoder.blocks.25.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
578 |
+
"visual_encoder.blocks.25.norm1.bias": "pytorch_model-00001-of-00002.bin",
|
579 |
+
"visual_encoder.blocks.25.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
580 |
+
"visual_encoder.blocks.25.norm2.bias": "pytorch_model-00001-of-00002.bin",
|
581 |
+
"visual_encoder.blocks.25.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
582 |
+
"visual_encoder.blocks.26.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
583 |
+
"visual_encoder.blocks.26.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
584 |
+
"visual_encoder.blocks.26.attn.q_bias": "pytorch_model-00001-of-00002.bin",
|
585 |
+
"visual_encoder.blocks.26.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
586 |
+
"visual_encoder.blocks.26.attn.v_bias": "pytorch_model-00001-of-00002.bin",
|
587 |
+
"visual_encoder.blocks.26.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
588 |
+
"visual_encoder.blocks.26.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
589 |
+
"visual_encoder.blocks.26.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
590 |
+
"visual_encoder.blocks.26.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
591 |
+
"visual_encoder.blocks.26.norm1.bias": "pytorch_model-00001-of-00002.bin",
|
592 |
+
"visual_encoder.blocks.26.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
593 |
+
"visual_encoder.blocks.26.norm2.bias": "pytorch_model-00001-of-00002.bin",
|
594 |
+
"visual_encoder.blocks.26.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
595 |
+
"visual_encoder.blocks.27.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
596 |
+
"visual_encoder.blocks.27.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
597 |
+
"visual_encoder.blocks.27.attn.q_bias": "pytorch_model-00001-of-00002.bin",
|
598 |
+
"visual_encoder.blocks.27.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
599 |
+
"visual_encoder.blocks.27.attn.v_bias": "pytorch_model-00001-of-00002.bin",
|
600 |
+
"visual_encoder.blocks.27.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
601 |
+
"visual_encoder.blocks.27.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
602 |
+
"visual_encoder.blocks.27.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
603 |
+
"visual_encoder.blocks.27.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
604 |
+
"visual_encoder.blocks.27.norm1.bias": "pytorch_model-00001-of-00002.bin",
|
605 |
+
"visual_encoder.blocks.27.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
606 |
+
"visual_encoder.blocks.27.norm2.bias": "pytorch_model-00001-of-00002.bin",
|
607 |
+
"visual_encoder.blocks.27.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
608 |
+
"visual_encoder.blocks.28.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
609 |
+
"visual_encoder.blocks.28.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
610 |
+
"visual_encoder.blocks.28.attn.q_bias": "pytorch_model-00001-of-00002.bin",
|
611 |
+
"visual_encoder.blocks.28.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
612 |
+
"visual_encoder.blocks.28.attn.v_bias": "pytorch_model-00001-of-00002.bin",
|
613 |
+
"visual_encoder.blocks.28.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
614 |
+
"visual_encoder.blocks.28.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
615 |
+
"visual_encoder.blocks.28.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
616 |
+
"visual_encoder.blocks.28.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
617 |
+
"visual_encoder.blocks.28.norm1.bias": "pytorch_model-00001-of-00002.bin",
|
618 |
+
"visual_encoder.blocks.28.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
619 |
+
"visual_encoder.blocks.28.norm2.bias": "pytorch_model-00001-of-00002.bin",
|
620 |
+
"visual_encoder.blocks.28.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
621 |
+
"visual_encoder.blocks.29.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
622 |
+
"visual_encoder.blocks.29.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
623 |
+
"visual_encoder.blocks.29.attn.q_bias": "pytorch_model-00001-of-00002.bin",
|
624 |
+
"visual_encoder.blocks.29.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
625 |
+
"visual_encoder.blocks.29.attn.v_bias": "pytorch_model-00001-of-00002.bin",
|
626 |
+
"visual_encoder.blocks.29.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
627 |
+
"visual_encoder.blocks.29.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
628 |
+
"visual_encoder.blocks.29.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
629 |
+
"visual_encoder.blocks.29.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
630 |
+
"visual_encoder.blocks.29.norm1.bias": "pytorch_model-00001-of-00002.bin",
|
631 |
+
"visual_encoder.blocks.29.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
632 |
+
"visual_encoder.blocks.29.norm2.bias": "pytorch_model-00001-of-00002.bin",
|
633 |
+
"visual_encoder.blocks.29.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
634 |
+
"visual_encoder.blocks.3.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
635 |
+
"visual_encoder.blocks.3.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
636 |
+
"visual_encoder.blocks.3.attn.q_bias": "pytorch_model-00001-of-00002.bin",
|
637 |
+
"visual_encoder.blocks.3.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
638 |
+
"visual_encoder.blocks.3.attn.v_bias": "pytorch_model-00001-of-00002.bin",
|
639 |
+
"visual_encoder.blocks.3.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
640 |
+
"visual_encoder.blocks.3.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
641 |
+
"visual_encoder.blocks.3.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
642 |
+
"visual_encoder.blocks.3.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
643 |
+
"visual_encoder.blocks.3.norm1.bias": "pytorch_model-00001-of-00002.bin",
|
644 |
+
"visual_encoder.blocks.3.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
645 |
+
"visual_encoder.blocks.3.norm2.bias": "pytorch_model-00001-of-00002.bin",
|
646 |
+
"visual_encoder.blocks.3.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
647 |
+
"visual_encoder.blocks.30.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
648 |
+
"visual_encoder.blocks.30.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
649 |
+
"visual_encoder.blocks.30.attn.q_bias": "pytorch_model-00001-of-00002.bin",
|
650 |
+
"visual_encoder.blocks.30.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
651 |
+
"visual_encoder.blocks.30.attn.v_bias": "pytorch_model-00001-of-00002.bin",
|
652 |
+
"visual_encoder.blocks.30.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
653 |
+
"visual_encoder.blocks.30.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
654 |
+
"visual_encoder.blocks.30.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
655 |
+
"visual_encoder.blocks.30.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
656 |
+
"visual_encoder.blocks.30.norm1.bias": "pytorch_model-00001-of-00002.bin",
|
657 |
+
"visual_encoder.blocks.30.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
658 |
+
"visual_encoder.blocks.30.norm2.bias": "pytorch_model-00001-of-00002.bin",
|
659 |
+
"visual_encoder.blocks.30.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
660 |
+
"visual_encoder.blocks.31.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
661 |
+
"visual_encoder.blocks.31.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
662 |
+
"visual_encoder.blocks.31.attn.q_bias": "pytorch_model-00001-of-00002.bin",
|
663 |
+
"visual_encoder.blocks.31.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
664 |
+
"visual_encoder.blocks.31.attn.v_bias": "pytorch_model-00001-of-00002.bin",
|
665 |
+
"visual_encoder.blocks.31.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
666 |
+
"visual_encoder.blocks.31.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
667 |
+
"visual_encoder.blocks.31.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
668 |
+
"visual_encoder.blocks.31.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
669 |
+
"visual_encoder.blocks.31.norm1.bias": "pytorch_model-00001-of-00002.bin",
|
670 |
+
"visual_encoder.blocks.31.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
671 |
+
"visual_encoder.blocks.31.norm2.bias": "pytorch_model-00001-of-00002.bin",
|
672 |
+
"visual_encoder.blocks.31.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
673 |
+
"visual_encoder.blocks.32.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
674 |
+
"visual_encoder.blocks.32.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
675 |
+
"visual_encoder.blocks.32.attn.q_bias": "pytorch_model-00001-of-00002.bin",
|
676 |
+
"visual_encoder.blocks.32.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
677 |
+
"visual_encoder.blocks.32.attn.v_bias": "pytorch_model-00001-of-00002.bin",
|
678 |
+
"visual_encoder.blocks.32.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
679 |
+
"visual_encoder.blocks.32.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
680 |
+
"visual_encoder.blocks.32.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
681 |
+
"visual_encoder.blocks.32.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
682 |
+
"visual_encoder.blocks.32.norm1.bias": "pytorch_model-00001-of-00002.bin",
|
683 |
+
"visual_encoder.blocks.32.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
684 |
+
"visual_encoder.blocks.32.norm2.bias": "pytorch_model-00001-of-00002.bin",
|
685 |
+
"visual_encoder.blocks.32.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
686 |
+
"visual_encoder.blocks.33.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
687 |
+
"visual_encoder.blocks.33.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
688 |
+
"visual_encoder.blocks.33.attn.q_bias": "pytorch_model-00001-of-00002.bin",
|
689 |
+
"visual_encoder.blocks.33.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
690 |
+
"visual_encoder.blocks.33.attn.v_bias": "pytorch_model-00001-of-00002.bin",
|
691 |
+
"visual_encoder.blocks.33.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
692 |
+
"visual_encoder.blocks.33.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
693 |
+
"visual_encoder.blocks.33.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
694 |
+
"visual_encoder.blocks.33.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
695 |
+
"visual_encoder.blocks.33.norm1.bias": "pytorch_model-00001-of-00002.bin",
|
696 |
+
"visual_encoder.blocks.33.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
697 |
+
"visual_encoder.blocks.33.norm2.bias": "pytorch_model-00001-of-00002.bin",
|
698 |
+
"visual_encoder.blocks.33.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
699 |
+
"visual_encoder.blocks.34.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
700 |
+
"visual_encoder.blocks.34.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
701 |
+
"visual_encoder.blocks.34.attn.q_bias": "pytorch_model-00001-of-00002.bin",
|
702 |
+
"visual_encoder.blocks.34.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
703 |
+
"visual_encoder.blocks.34.attn.v_bias": "pytorch_model-00001-of-00002.bin",
|
704 |
+
"visual_encoder.blocks.34.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
705 |
+
"visual_encoder.blocks.34.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
706 |
+
"visual_encoder.blocks.34.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
707 |
+
"visual_encoder.blocks.34.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
708 |
+
"visual_encoder.blocks.34.norm1.bias": "pytorch_model-00001-of-00002.bin",
|
709 |
+
"visual_encoder.blocks.34.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
710 |
+
"visual_encoder.blocks.34.norm2.bias": "pytorch_model-00001-of-00002.bin",
|
711 |
+
"visual_encoder.blocks.34.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
712 |
+
"visual_encoder.blocks.35.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
713 |
+
"visual_encoder.blocks.35.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
714 |
+
"visual_encoder.blocks.35.attn.q_bias": "pytorch_model-00001-of-00002.bin",
|
715 |
+
"visual_encoder.blocks.35.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
716 |
+
"visual_encoder.blocks.35.attn.v_bias": "pytorch_model-00001-of-00002.bin",
|
717 |
+
"visual_encoder.blocks.35.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
718 |
+
"visual_encoder.blocks.35.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
719 |
+
"visual_encoder.blocks.35.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
720 |
+
"visual_encoder.blocks.35.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
721 |
+
"visual_encoder.blocks.35.norm1.bias": "pytorch_model-00001-of-00002.bin",
|
722 |
+
"visual_encoder.blocks.35.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
723 |
+
"visual_encoder.blocks.35.norm2.bias": "pytorch_model-00001-of-00002.bin",
|
724 |
+
"visual_encoder.blocks.35.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
725 |
+
"visual_encoder.blocks.36.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
726 |
+
"visual_encoder.blocks.36.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
727 |
+
"visual_encoder.blocks.36.attn.q_bias": "pytorch_model-00001-of-00002.bin",
|
728 |
+
"visual_encoder.blocks.36.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
729 |
+
"visual_encoder.blocks.36.attn.v_bias": "pytorch_model-00001-of-00002.bin",
|
730 |
+
"visual_encoder.blocks.36.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
731 |
+
"visual_encoder.blocks.36.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
732 |
+
"visual_encoder.blocks.36.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
733 |
+
"visual_encoder.blocks.36.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
734 |
+
"visual_encoder.blocks.36.norm1.bias": "pytorch_model-00001-of-00002.bin",
|
735 |
+
"visual_encoder.blocks.36.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
736 |
+
"visual_encoder.blocks.36.norm2.bias": "pytorch_model-00001-of-00002.bin",
|
737 |
+
"visual_encoder.blocks.36.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
738 |
+
"visual_encoder.blocks.37.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
739 |
+
"visual_encoder.blocks.37.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
740 |
+
"visual_encoder.blocks.37.attn.q_bias": "pytorch_model-00001-of-00002.bin",
|
741 |
+
"visual_encoder.blocks.37.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
742 |
+
"visual_encoder.blocks.37.attn.v_bias": "pytorch_model-00001-of-00002.bin",
|
743 |
+
"visual_encoder.blocks.37.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
744 |
+
"visual_encoder.blocks.37.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
745 |
+
"visual_encoder.blocks.37.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
746 |
+
"visual_encoder.blocks.37.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
747 |
+
"visual_encoder.blocks.37.norm1.bias": "pytorch_model-00001-of-00002.bin",
|
748 |
+
"visual_encoder.blocks.37.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
749 |
+
"visual_encoder.blocks.37.norm2.bias": "pytorch_model-00001-of-00002.bin",
|
750 |
+
"visual_encoder.blocks.37.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
751 |
+
"visual_encoder.blocks.38.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
752 |
+
"visual_encoder.blocks.38.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
753 |
+
"visual_encoder.blocks.38.attn.q_bias": "pytorch_model-00001-of-00002.bin",
|
754 |
+
"visual_encoder.blocks.38.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
755 |
+
"visual_encoder.blocks.38.attn.v_bias": "pytorch_model-00001-of-00002.bin",
|
756 |
+
"visual_encoder.blocks.38.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
757 |
+
"visual_encoder.blocks.38.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
758 |
+
"visual_encoder.blocks.38.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
759 |
+
"visual_encoder.blocks.38.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
760 |
+
"visual_encoder.blocks.38.norm1.bias": "pytorch_model-00001-of-00002.bin",
|
761 |
+
"visual_encoder.blocks.38.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
762 |
+
"visual_encoder.blocks.38.norm2.bias": "pytorch_model-00001-of-00002.bin",
|
763 |
+
"visual_encoder.blocks.38.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
764 |
+
"visual_encoder.blocks.4.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
765 |
+
"visual_encoder.blocks.4.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
766 |
+
"visual_encoder.blocks.4.attn.q_bias": "pytorch_model-00001-of-00002.bin",
|
767 |
+
"visual_encoder.blocks.4.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
768 |
+
"visual_encoder.blocks.4.attn.v_bias": "pytorch_model-00001-of-00002.bin",
|
769 |
+
"visual_encoder.blocks.4.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
770 |
+
"visual_encoder.blocks.4.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
771 |
+
"visual_encoder.blocks.4.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
772 |
+
"visual_encoder.blocks.4.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
773 |
+
"visual_encoder.blocks.4.norm1.bias": "pytorch_model-00001-of-00002.bin",
|
774 |
+
"visual_encoder.blocks.4.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
775 |
+
"visual_encoder.blocks.4.norm2.bias": "pytorch_model-00001-of-00002.bin",
|
776 |
+
"visual_encoder.blocks.4.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
777 |
+
"visual_encoder.blocks.5.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
778 |
+
"visual_encoder.blocks.5.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
779 |
+
"visual_encoder.blocks.5.attn.q_bias": "pytorch_model-00001-of-00002.bin",
|
780 |
+
"visual_encoder.blocks.5.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
781 |
+
"visual_encoder.blocks.5.attn.v_bias": "pytorch_model-00001-of-00002.bin",
|
782 |
+
"visual_encoder.blocks.5.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
783 |
+
"visual_encoder.blocks.5.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
784 |
+
"visual_encoder.blocks.5.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
785 |
+
"visual_encoder.blocks.5.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
786 |
+
"visual_encoder.blocks.5.norm1.bias": "pytorch_model-00001-of-00002.bin",
|
787 |
+
"visual_encoder.blocks.5.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
788 |
+
"visual_encoder.blocks.5.norm2.bias": "pytorch_model-00001-of-00002.bin",
|
789 |
+
"visual_encoder.blocks.5.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
790 |
+
"visual_encoder.blocks.6.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
791 |
+
"visual_encoder.blocks.6.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
792 |
+
"visual_encoder.blocks.6.attn.q_bias": "pytorch_model-00001-of-00002.bin",
|
793 |
+
"visual_encoder.blocks.6.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
794 |
+
"visual_encoder.blocks.6.attn.v_bias": "pytorch_model-00001-of-00002.bin",
|
795 |
+
"visual_encoder.blocks.6.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
796 |
+
"visual_encoder.blocks.6.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
797 |
+
"visual_encoder.blocks.6.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
798 |
+
"visual_encoder.blocks.6.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
799 |
+
"visual_encoder.blocks.6.norm1.bias": "pytorch_model-00001-of-00002.bin",
|
800 |
+
"visual_encoder.blocks.6.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
801 |
+
"visual_encoder.blocks.6.norm2.bias": "pytorch_model-00001-of-00002.bin",
|
802 |
+
"visual_encoder.blocks.6.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
803 |
+
"visual_encoder.blocks.7.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
804 |
+
"visual_encoder.blocks.7.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
805 |
+
"visual_encoder.blocks.7.attn.q_bias": "pytorch_model-00001-of-00002.bin",
|
806 |
+
"visual_encoder.blocks.7.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
807 |
+
"visual_encoder.blocks.7.attn.v_bias": "pytorch_model-00001-of-00002.bin",
|
808 |
+
"visual_encoder.blocks.7.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
809 |
+
"visual_encoder.blocks.7.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
810 |
+
"visual_encoder.blocks.7.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
811 |
+
"visual_encoder.blocks.7.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
812 |
+
"visual_encoder.blocks.7.norm1.bias": "pytorch_model-00001-of-00002.bin",
|
813 |
+
"visual_encoder.blocks.7.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
814 |
+
"visual_encoder.blocks.7.norm2.bias": "pytorch_model-00001-of-00002.bin",
|
815 |
+
"visual_encoder.blocks.7.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
816 |
+
"visual_encoder.blocks.8.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
817 |
+
"visual_encoder.blocks.8.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
818 |
+
"visual_encoder.blocks.8.attn.q_bias": "pytorch_model-00001-of-00002.bin",
|
819 |
+
"visual_encoder.blocks.8.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
820 |
+
"visual_encoder.blocks.8.attn.v_bias": "pytorch_model-00001-of-00002.bin",
|
821 |
+
"visual_encoder.blocks.8.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
822 |
+
"visual_encoder.blocks.8.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
823 |
+
"visual_encoder.blocks.8.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
824 |
+
"visual_encoder.blocks.8.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
825 |
+
"visual_encoder.blocks.8.norm1.bias": "pytorch_model-00001-of-00002.bin",
|
826 |
+
"visual_encoder.blocks.8.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
827 |
+
"visual_encoder.blocks.8.norm2.bias": "pytorch_model-00001-of-00002.bin",
|
828 |
+
"visual_encoder.blocks.8.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
829 |
+
"visual_encoder.blocks.9.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
|
830 |
+
"visual_encoder.blocks.9.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
|
831 |
+
"visual_encoder.blocks.9.attn.q_bias": "pytorch_model-00001-of-00002.bin",
|
832 |
+
"visual_encoder.blocks.9.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
|
833 |
+
"visual_encoder.blocks.9.attn.v_bias": "pytorch_model-00001-of-00002.bin",
|
834 |
+
"visual_encoder.blocks.9.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
|
835 |
+
"visual_encoder.blocks.9.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
|
836 |
+
"visual_encoder.blocks.9.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
|
837 |
+
"visual_encoder.blocks.9.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
|
838 |
+
"visual_encoder.blocks.9.norm1.bias": "pytorch_model-00001-of-00002.bin",
|
839 |
+
"visual_encoder.blocks.9.norm1.weight": "pytorch_model-00001-of-00002.bin",
|
840 |
+
"visual_encoder.blocks.9.norm2.bias": "pytorch_model-00001-of-00002.bin",
|
841 |
+
"visual_encoder.blocks.9.norm2.weight": "pytorch_model-00001-of-00002.bin",
|
842 |
+
"visual_encoder.cls_token": "pytorch_model-00001-of-00002.bin",
|
843 |
+
"visual_encoder.patch_embed.proj.bias": "pytorch_model-00001-of-00002.bin",
|
844 |
+
"visual_encoder.patch_embed.proj.weight": "pytorch_model-00001-of-00002.bin",
|
845 |
+
"visual_encoder.pos_embed": "pytorch_model-00001-of-00002.bin"
|
846 |
+
}
|
847 |
+
}
|