mightyzau commited on
Commit
8cf6c16
·
1 Parent(s): 33381b6

Upload folder using huggingface_hub

Browse files
config.json ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "InfMLLM"
4
+ ],
5
+ "auto_map": {
6
+ "AutoConfig": "configuration_infmllm.InfMLLMConfig",
7
+ "AutoModel": "modeling_infmllm.InfMLLM"
8
+ },
9
+ "image_size": 448,
10
+ "lm_model": "pretrain_models/lmsys/vicuna-7b-v1.5/",
11
+ "lm_tokenizer": "pretrain_models/lmsys/vicuna-7b-v1.5/",
12
+ "pool_out_size": "32+16+8",
13
+ "precision": "amp_bf16",
14
+ "torch_dtype": "float32",
15
+ "transformers_version": "4.31.0",
16
+ "vit_model": "eva_clip_g"
17
+ }
configuration_infmllm.py ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+ from typing import List
3
+
4
+
5
+ class InfMLLMConfig(PretrainedConfig):
6
+ def __init__(
7
+ self,
8
+ image_size="448",
9
+ vit_model="eva_clip_g",
10
+ pool_out_size="32",
11
+ lm_model="pretrain_models/lmsys/vicuna-7b-v1.5/",
12
+ lm_tokenizer="pretrain_models/lmsys/vicuna-7b-v1.5/",
13
+ precision="amp_bf16",
14
+ **kwargs
15
+ ):
16
+ self.image_size = image_size
17
+ self.vit_model = vit_model
18
+ self.pool_out_size = pool_out_size
19
+ self.lm_model = lm_model
20
+ self.lm_tokenizer = lm_tokenizer
21
+ self.precision = precision
22
+ super().__init__(**kwargs)
23
+
eva_vit.py ADDED
@@ -0,0 +1,412 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Based on EVA, BEIT, timm and DeiT code bases
2
+ # https://github.com/baaivision/EVA
3
+ # https://github.com/rwightman/pytorch-image-models/tree/master/timm
4
+ # https://github.com/microsoft/unilm/tree/master/beit
5
+ # https://github.com/facebookresearch/deit/
6
+ # https://github.com/facebookresearch/dino
7
+ # --------------------------------------------------------'
8
+ import os
9
+ import math
10
+ from functools import partial
11
+ import glob
12
+
13
+ import torch
14
+ import torch.nn as nn
15
+ import torch.nn.functional as F
16
+ import torch.utils.checkpoint as checkpoint
17
+ from timm.models.layers import drop_path, to_2tuple, trunc_normal_
18
+
19
+
20
+ class DropPath(nn.Module):
21
+ """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
22
+ """
23
+ def __init__(self, drop_prob=None):
24
+ super(DropPath, self).__init__()
25
+ self.drop_prob = drop_prob
26
+
27
+ def forward(self, x):
28
+ return drop_path(x, self.drop_prob, self.training)
29
+
30
+ def extra_repr(self) -> str:
31
+ return 'p={}'.format(self.drop_prob)
32
+
33
+
34
+ class Mlp(nn.Module):
35
+ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
36
+ super().__init__()
37
+ out_features = out_features or in_features
38
+ hidden_features = hidden_features or in_features
39
+ self.fc1 = nn.Linear(in_features, hidden_features)
40
+ self.act = act_layer()
41
+ self.fc2 = nn.Linear(hidden_features, out_features)
42
+ self.drop = nn.Dropout(drop)
43
+
44
+ def forward(self, x):
45
+ x = self.fc1(x)
46
+ x = self.act(x)
47
+ # x = self.drop(x)
48
+ # commit this for the orignal BERT implement
49
+ x = self.fc2(x)
50
+ x = self.drop(x)
51
+ return x
52
+
53
+
54
+ class Attention(nn.Module):
55
+ def __init__(
56
+ self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
57
+ proj_drop=0., window_size=None, attn_head_dim=None):
58
+ super().__init__()
59
+ self.num_heads = num_heads
60
+ head_dim = dim // num_heads
61
+ if attn_head_dim is not None:
62
+ head_dim = attn_head_dim
63
+ all_head_dim = head_dim * self.num_heads
64
+ self.scale = qk_scale or head_dim ** -0.5
65
+
66
+ self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
67
+ if qkv_bias:
68
+ self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
69
+ self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
70
+ else:
71
+ self.q_bias = None
72
+ self.v_bias = None
73
+
74
+ if window_size:
75
+ self.window_size = window_size
76
+ self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
77
+ self.relative_position_bias_table = nn.Parameter(
78
+ torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH
79
+ # cls to token & token 2 cls & cls to cls
80
+
81
+ # get pair-wise relative position index for each token inside the window
82
+ coords_h = torch.arange(window_size[0])
83
+ coords_w = torch.arange(window_size[1])
84
+ coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
85
+ coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
86
+ relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
87
+ relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
88
+ relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
89
+ relative_coords[:, :, 1] += window_size[1] - 1
90
+ relative_coords[:, :, 0] *= 2 * window_size[1] - 1
91
+ relative_position_index = \
92
+ torch.zeros(size=(window_size[0] * window_size[1] + 1, ) * 2, dtype=relative_coords.dtype)
93
+ relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
94
+ relative_position_index[0, 0:] = self.num_relative_distance - 3
95
+ relative_position_index[0:, 0] = self.num_relative_distance - 2
96
+ relative_position_index[0, 0] = self.num_relative_distance - 1
97
+
98
+ self.register_buffer("relative_position_index", relative_position_index)
99
+ else:
100
+ self.window_size = None
101
+ self.relative_position_bias_table = None
102
+ self.relative_position_index = None
103
+
104
+ self.attn_drop = nn.Dropout(attn_drop)
105
+ self.proj = nn.Linear(all_head_dim, dim)
106
+ self.proj_drop = nn.Dropout(proj_drop)
107
+
108
+ def forward(self, x, rel_pos_bias=None):
109
+ B, N, C = x.shape
110
+ qkv_bias = None
111
+ if self.q_bias is not None:
112
+ qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
113
+ # qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
114
+ qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
115
+ qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
116
+ q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
117
+
118
+ q = q * self.scale
119
+ attn = (q @ k.transpose(-2, -1))
120
+
121
+ if self.relative_position_bias_table is not None:
122
+ relative_position_bias = \
123
+ self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
124
+ self.window_size[0] * self.window_size[1] + 1,
125
+ self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
126
+ relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
127
+ attn = attn + relative_position_bias.unsqueeze(0)
128
+
129
+ if rel_pos_bias is not None:
130
+ attn = attn + rel_pos_bias
131
+
132
+ attn = attn.softmax(dim=-1)
133
+ attn = self.attn_drop(attn)
134
+
135
+ x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
136
+ x = self.proj(x)
137
+ x = self.proj_drop(x)
138
+ return x
139
+
140
+
141
+ class Block(nn.Module):
142
+
143
+ def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
144
+ drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm,
145
+ window_size=None, attn_head_dim=None):
146
+ super().__init__()
147
+ self.norm1 = norm_layer(dim)
148
+ self.attn = Attention(
149
+ dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
150
+ attn_drop=attn_drop, proj_drop=drop, window_size=window_size, attn_head_dim=attn_head_dim)
151
+ # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
152
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
153
+ self.norm2 = norm_layer(dim)
154
+ mlp_hidden_dim = int(dim * mlp_ratio)
155
+ self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
156
+
157
+ if init_values is not None and init_values > 0:
158
+ self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
159
+ self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
160
+ else:
161
+ self.gamma_1, self.gamma_2 = None, None
162
+
163
+ def forward(self, x, rel_pos_bias=None):
164
+ if self.gamma_1 is None:
165
+ x = x + self.drop_path(self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias))
166
+ x = x + self.drop_path(self.mlp(self.norm2(x)))
167
+ else:
168
+ x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias))
169
+ x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
170
+ return x
171
+
172
+
173
+ class PatchEmbed(nn.Module):
174
+ """ Image to Patch Embedding
175
+ """
176
+ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768):
177
+ super().__init__()
178
+ img_size = to_2tuple(img_size)
179
+ patch_size = to_2tuple(patch_size)
180
+ num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
181
+ self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
182
+ self.img_size = img_size
183
+ self.patch_size = patch_size
184
+ self.num_patches = num_patches
185
+
186
+ self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
187
+
188
+ def forward(self, x, **kwargs):
189
+ B, C, H, W = x.shape
190
+ # FIXME look at relaxing size constraints
191
+ assert H == self.img_size[0] and W == self.img_size[1], \
192
+ f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
193
+ x = self.proj(x).flatten(2).transpose(1, 2)
194
+ return x
195
+
196
+
197
+ class RelativePositionBias(nn.Module):
198
+
199
+ def __init__(self, window_size, num_heads):
200
+ super().__init__()
201
+ self.window_size = window_size
202
+ self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
203
+ self.relative_position_bias_table = nn.Parameter(
204
+ torch.zeros(self.num_relative_distance, num_heads)) # 2*Wh-1 * 2*Ww-1, nH
205
+
206
+ # get pair-wise relative position index for each token inside the window
207
+ coords_h = torch.arange(window_size[0])
208
+ coords_w = torch.arange(window_size[1])
209
+ coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
210
+ coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
211
+ relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
212
+ relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
213
+ relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
214
+ relative_coords[:, :, 1] += window_size[1] - 1
215
+ relative_coords[:, :, 0] *= 2 * window_size[1] - 1
216
+ relative_position_index = \
217
+ torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype)
218
+ relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
219
+ relative_position_index[0, 0:] = self.num_relative_distance - 3
220
+ relative_position_index[0:, 0] = self.num_relative_distance - 2
221
+ relative_position_index[0, 0] = self.num_relative_distance - 1
222
+
223
+ self.register_buffer("relative_position_index", relative_position_index)
224
+
225
+ def forward(self):
226
+ relative_position_bias = \
227
+ self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
228
+ self.window_size[0] * self.window_size[1] + 1,
229
+ self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH
230
+ return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
231
+
232
+
233
+ class VisionTransformer(nn.Module):
234
+ """ Vision Transformer with support for patch or hybrid CNN input stage
235
+ """
236
+ def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
237
+ num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
238
+ drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None,
239
+ use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False,
240
+ use_mean_pooling=True, init_scale=0.001, use_checkpoint=False):
241
+ super().__init__()
242
+ self.image_size = img_size
243
+ self.num_classes = num_classes
244
+ self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
245
+
246
+ self.patch_embed = PatchEmbed(
247
+ img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim)
248
+ num_patches = self.patch_embed.num_patches
249
+
250
+ self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
251
+ if use_abs_pos_emb:
252
+ self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
253
+ else:
254
+ self.pos_embed = None
255
+ self.pos_drop = nn.Dropout(p=drop_rate)
256
+
257
+ if use_shared_rel_pos_bias:
258
+ self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.patch_shape, num_heads=num_heads)
259
+ else:
260
+ self.rel_pos_bias = None
261
+ self.use_checkpoint = use_checkpoint
262
+
263
+ dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
264
+ self.use_rel_pos_bias = use_rel_pos_bias
265
+ self.blocks = nn.ModuleList([
266
+ Block(
267
+ dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
268
+ drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
269
+ init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None,
270
+ )
271
+ for i in range(depth)])
272
+
273
+ if self.pos_embed is not None:
274
+ trunc_normal_(self.pos_embed, std=.02)
275
+ trunc_normal_(self.cls_token, std=.02)
276
+
277
+ self.apply(self._init_weights)
278
+ self.fix_init_weight()
279
+
280
+ def fix_init_weight(self):
281
+ def rescale(param, layer_id):
282
+ param.div_(math.sqrt(2.0 * layer_id))
283
+
284
+ for layer_id, layer in enumerate(self.blocks):
285
+ rescale(layer.attn.proj.weight.data, layer_id + 1)
286
+ rescale(layer.mlp.fc2.weight.data, layer_id + 1)
287
+
288
+ def _init_weights(self, m):
289
+ if isinstance(m, nn.Linear):
290
+ trunc_normal_(m.weight, std=.02)
291
+ if isinstance(m, nn.Linear) and m.bias is not None:
292
+ nn.init.constant_(m.bias, 0)
293
+ elif isinstance(m, nn.LayerNorm):
294
+ nn.init.constant_(m.bias, 0)
295
+ nn.init.constant_(m.weight, 1.0)
296
+
297
+ def get_classifier(self):
298
+ return self.head
299
+
300
+ def reset_classifier(self, num_classes, global_pool=''):
301
+ self.num_classes = num_classes
302
+ self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
303
+
304
+ def forward_features(self, x):
305
+ x = self.patch_embed(x)
306
+ batch_size, seq_len, _ = x.size()
307
+
308
+ cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
309
+ x = torch.cat((cls_tokens, x), dim=1)
310
+ if self.pos_embed is not None:
311
+ x = x + self.pos_embed
312
+ x = self.pos_drop(x)
313
+
314
+ rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None
315
+ for blk in self.blocks:
316
+ if self.use_checkpoint:
317
+ x = checkpoint.checkpoint(blk, x, rel_pos_bias)
318
+ else:
319
+ x = blk(x, rel_pos_bias)
320
+ return x
321
+
322
+
323
+ def forward(self, x):
324
+ x = self.forward_features(x)
325
+ return x
326
+
327
+ def get_intermediate_layers(self, x):
328
+ x = self.patch_embed(x)
329
+ batch_size, seq_len, _ = x.size()
330
+
331
+ cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks
332
+ x = torch.cat((cls_tokens, x), dim=1)
333
+ if self.pos_embed is not None:
334
+ x = x + self.pos_embed
335
+ x = self.pos_drop(x)
336
+
337
+ features = []
338
+ rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None
339
+ for blk in self.blocks:
340
+ x = blk(x, rel_pos_bias)
341
+ features.append(x)
342
+
343
+ return features
344
+
345
+ def get_num_layer(self, var_name=""):
346
+ if var_name in ("cls_token", "mask_token", "pos_embed"):
347
+ return 0
348
+ elif var_name.startswith("patch_embed"):
349
+ return 0
350
+ elif var_name.startswith("rel_pos_bias"):
351
+ return len(self.blocks) - 1
352
+ elif var_name.startswith("blocks"):
353
+ layer_id = int(var_name.split('.')[1])
354
+ return layer_id + 1
355
+ else:
356
+ return len(self.blocks)
357
+
358
+
359
+ def interpolate_pos_embed(model, checkpoint_model):
360
+ if 'pos_embed' in checkpoint_model:
361
+ pos_embed_checkpoint = checkpoint_model['pos_embed'].float()
362
+ embedding_size = pos_embed_checkpoint.shape[-1]
363
+ num_patches = model.patch_embed.num_patches
364
+ num_extra_tokens = model.pos_embed.shape[-2] - num_patches
365
+ # height (== width) for the checkpoint position embedding
366
+ orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
367
+ # height (== width) for the new position embedding
368
+ new_size = int(num_patches ** 0.5)
369
+ # class_token and dist_token are kept unchanged
370
+ if orig_size != new_size:
371
+ print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size))
372
+ extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
373
+ # only the position tokens are interpolated
374
+ pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
375
+ pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
376
+ pos_tokens = torch.nn.functional.interpolate(
377
+ pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
378
+ pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
379
+ new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
380
+ checkpoint_model['pos_embed'] = new_pos_embed
381
+
382
+
383
+ def convert_weights_to_fp16(model: nn.Module):
384
+ """Convert applicable model parameters to fp16"""
385
+
386
+ def _convert_weights_to_fp16(l):
387
+ if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
388
+ l.weight.data = l.weight.data.half()
389
+ if l.bias is not None:
390
+ l.bias.data = l.bias.data.half()
391
+
392
+ model.apply(_convert_weights_to_fp16)
393
+
394
+
395
+ def create_eva_vit_g(img_size=224,
396
+ drop_path_rate=0.4,
397
+ use_checkpoint=False):
398
+
399
+ model = VisionTransformer(
400
+ img_size=img_size,
401
+ patch_size=14,
402
+ use_mean_pooling=False,
403
+ embed_dim=1408,
404
+ depth=39,
405
+ num_heads=1408//88,
406
+ mlp_ratio=4.3637,
407
+ qkv_bias=True,
408
+ drop_path_rate=drop_path_rate,
409
+ norm_layer=partial(nn.LayerNorm, eps=1e-6),
410
+ use_checkpoint=use_checkpoint,
411
+ )
412
+ return model
modeling_infmllm.py ADDED
@@ -0,0 +1,286 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ import torch
3
+ import torch.nn as nn
4
+ from contextlib import suppress
5
+ from einops import rearrange
6
+ from transformers import LlamaForCausalLM, LlamaTokenizer, PreTrainedModel
7
+ from torchvision import transforms
8
+ from torchvision.transforms.functional import InterpolationMode
9
+
10
+ from .eva_vit import create_eva_vit_g
11
+ from .pooler import Pooler
12
+
13
+
14
+ def get_autocast(precision, cache_enabled=True):
15
+ if precision == "amp":
16
+ return lambda: torch.cuda.amp.autocast(cache_enabled=cache_enabled)
17
+ elif precision == "amp_bfloat16" or precision == "amp_bf16" or precision == 'bf16':
18
+ return lambda: torch.cuda.amp.autocast(dtype=torch.bfloat16, cache_enabled=cache_enabled)
19
+ elif precision == 'fp16':
20
+ return lambda: torch.cuda.amp.autocast(dtype=torch.float16, cache_enabled=cache_enabled)
21
+ elif precision == 'fp32':
22
+ return suppress
23
+ else:
24
+ raise ValueError('not supported precision: {}'.format(precision))
25
+
26
+ class LayerNorm(nn.LayerNorm):
27
+ """Subclass torch's LayerNorm to handle fp16."""
28
+ def forward(self, x: torch.Tensor):
29
+ orig_type = x.dtype
30
+ ret = super().forward(x.type(torch.float32))
31
+ return ret.type(orig_type)
32
+
33
+ def init_vision_encoder(model_name,
34
+ img_size,
35
+ drop_path_rate,
36
+ use_grad_checkpoint):
37
+ if model_name == "eva_clip_g":
38
+ visual_encoder = create_eva_vit_g(
39
+ img_size, drop_path_rate, use_grad_checkpoint)
40
+ else:
41
+ raise ValueError()
42
+
43
+ ln_vision = LayerNorm(visual_encoder.num_features)
44
+ return visual_encoder, ln_vision
45
+
46
+ class ImageProcessor:
47
+ def __init__(self, image_size=364, mean=None, std=None):
48
+ if mean is None:
49
+ self.mean = mean = (0.48145466, 0.4578275, 0.40821073)
50
+ if std is None:
51
+ self.std = std = (0.26862954, 0.26130258, 0.27577711)
52
+
53
+ self.normalize = transforms.Normalize(mean, std)
54
+ self.transform = transforms.Compose(
55
+ [
56
+ transforms.Resize(
57
+ (image_size, image_size), interpolation=InterpolationMode.BICUBIC
58
+ ),
59
+ transforms.ToTensor(),
60
+ self.normalize,
61
+ ]
62
+ )
63
+
64
+ def __call__(self, item):
65
+ return self.transform(item)
66
+
67
+ class InfMLLM(PreTrainedModel):
68
+ def __init__(self, config):
69
+ super().__init__(config)
70
+ vit_model = config.vit_model
71
+ img_size = config.image_size
72
+ lm_model = config.lm_model
73
+ lm_tokenizer = config.lm_tokenizer
74
+ precision = config.precision
75
+ pool_out_size = config.pool_out_size
76
+ self.img_processor = ImageProcessor(image_size=img_size)
77
+
78
+ self.visual_encoder, self.ln_vision = init_vision_encoder(
79
+ vit_model, img_size, drop_path_rate=0.0, use_grad_checkpoint=False)
80
+
81
+ self.lm_tokenizer = LlamaTokenizer.from_pretrained(lm_tokenizer, use_fast=False, trust_remote_code=True)
82
+ self.lm_tokenizer.pad_token = self.lm_tokenizer.unk_token
83
+ self.lm_model = LlamaForCausalLM.from_pretrained(lm_model, trust_remote_code=True, torch_dtype='auto')
84
+
85
+ self.pooler = Pooler(dim_in=self.visual_encoder.num_features,
86
+ dim_out=self.lm_model.config.hidden_size,
87
+ pool_out_size=pool_out_size)
88
+ self.llama_proj = nn.Identity()
89
+
90
+ self.precision = precision
91
+ self._apply_lemmatizer = config.apply_lemmatizer if hasattr(config, 'apply_lemmatizer') else False
92
+ self._lemmatizer = None
93
+
94
+ def prompt_wrap(self, img_embeds, atts_img, prompts):
95
+ assert len(img_embeds) == len(atts_img) == len(prompts)
96
+
97
+ bos = torch.ones([1, 1], dtype=torch.long, device=img_embeds.device) * self.lm_tokenizer.bos_token_id
98
+ bos_embeds = self.lm_model.get_input_embeddings()(bos)
99
+
100
+ emb_lists = []
101
+ image_mask = []
102
+ for each_img_embed, each_prompt in zip(img_embeds, prompts):
103
+ assert '<ImageHere>' in each_prompt
104
+ p_before, p_after = each_prompt.split('<ImageHere>')
105
+
106
+ p_before_tokens = self.lm_tokenizer(
107
+ p_before, return_tensors="pt", add_special_tokens=False).to(img_embeds.device)
108
+ p_after_tokens = self.lm_tokenizer(
109
+ p_after, return_tensors="pt", add_special_tokens=False).to(img_embeds.device)
110
+
111
+ p_before_embed = self.lm_model.get_input_embeddings()(p_before_tokens.input_ids.long()) # [1, 6, 4096]
112
+ p_after_embed = self.lm_model.get_input_embeddings()(p_after_tokens.input_ids.long()) # [1, 17, 4096]
113
+ # add 1 bos
114
+ wrapped_emb = torch.cat([bos_embeds, p_before_embed, each_img_embed[None], p_after_embed], dim=1) # [1, 87, 4096]
115
+ emb_lists.append(wrapped_emb)
116
+
117
+ image_mask.append( torch.tensor([0] * wrapped_emb.size(1)) )
118
+ image_mask[-1][range(bos_embeds.size(1) + p_before_embed.size(1),
119
+ bos_embeds.size(1) + p_before_embed.size(1) + len(each_img_embed))] = 1
120
+ assert image_mask[-1].sum() == each_img_embed.size(0)
121
+
122
+ emb_lens = [emb.shape[1] for emb in emb_lists]
123
+ pad_emb = self.lm_model.get_input_embeddings()(torch.tensor(self.lm_tokenizer.pad_token_id, device=img_embeds.device)) # [4096]
124
+
125
+ assert not self.training
126
+ # during inference mode, padding on the left
127
+ wrapped_embs = pad_emb.expand(len(emb_lens), max(emb_lens), -1).clone() # [12, 87, 4096]
128
+ wrapped_atts = torch.zeros([len(emb_lens), max(emb_lens)], dtype=torch.int, device=img_embeds.device) # [12, 87]
129
+ wrapped_image_masks = torch.zeros([len(emb_lens), max(emb_lens)], dtype=torch.int, device=img_embeds.device) # [12, 87]
130
+ for i, emb in enumerate(emb_lists):
131
+ wrapped_embs[i, -emb_lens[i]:] = emb
132
+ wrapped_atts[i, -emb_lens[i]:] = 1
133
+ wrapped_image_masks[i, -emb_lens[i]:] = image_mask[i]
134
+ return wrapped_embs, wrapped_atts, wrapped_image_masks
135
+
136
+ @torch.no_grad()
137
+ def forward_image_feature(self, image):
138
+ autocast = get_autocast(self.precision, cache_enabled=True)
139
+ with autocast():
140
+ if image.ndim == 4:
141
+ image = image.unsqueeze(1).unsqueeze(1)
142
+ assert image.ndim == 6
143
+
144
+ b, t, f = image.shape[:3]
145
+ assert t == 1 and f == 1
146
+ image = rearrange(image, "b t f c h w -> (b t f) c h w")
147
+
148
+ image_embeds = self.ln_vision(self.visual_encoder(image))
149
+
150
+ image_embeds = rearrange(image_embeds, "(b t f) L D -> b t f L D", t=t, f=f)
151
+ query_output= self.pooler(image_embeds)
152
+ query_output = query_output.squeeze(1)
153
+ embeds_img = self.llama_proj(query_output)
154
+
155
+ return embeds_img
156
+
157
+ @torch.no_grad()
158
+ def generate(
159
+ self,
160
+ samples,
161
+ use_nucleus_sampling=False,
162
+ num_beams=5,
163
+ max_length=30,
164
+ min_length=1,
165
+ top_p=0.9,
166
+ repetition_penalty=1.0,
167
+ length_penalty=1.0,
168
+ num_captions=1,
169
+ temperature=1,
170
+ ):
171
+ autocast = get_autocast(self.precision, cache_enabled=True)
172
+ with autocast():
173
+ image = samples["image"]
174
+ embeds_img = self.forward_image_feature(image)
175
+ atts_img = torch.ones(embeds_img.size()[:-1], dtype=torch.long).to(image.device)
176
+
177
+ prompts = samples["prompts"]
178
+ assert isinstance(prompts, (tuple, list))
179
+
180
+ # Convert prompts to embeds and, repalce "<ImageHere>" with img_embeds
181
+ inputs_embeds, attention_mask, masks_img = self.prompt_wrap(embeds_img, atts_img, prompts)
182
+
183
+ model_args = dict(
184
+ inputs_embeds=inputs_embeds,
185
+ attention_mask=attention_mask,
186
+ do_sample=use_nucleus_sampling,
187
+ top_p=top_p,
188
+ temperature=temperature,
189
+ num_beams=num_beams,
190
+ max_length=max_length,
191
+ min_length=min_length,
192
+ eos_token_id=self.lm_tokenizer.eos_token_id,
193
+ repetition_penalty=repetition_penalty,
194
+ length_penalty=length_penalty,
195
+ num_return_sequences=num_captions,
196
+ )
197
+ outputs = self.lm_model.generate(**model_args)
198
+
199
+ output_text = self.lm_tokenizer.batch_decode(
200
+ outputs, skip_special_tokens=True
201
+ )
202
+
203
+ output_text = [text.strip() for text in output_text]
204
+
205
+ return output_text
206
+
207
+ @torch.no_grad()
208
+ def predict_answers(
209
+ self,
210
+ samples,
211
+ num_beams=5,
212
+ max_len=10,
213
+ min_len=1,
214
+ length_penalty=0,
215
+ ):
216
+ # VQA tasks
217
+ autocast = get_autocast(self.precision, cache_enabled=True)
218
+ with autocast():
219
+ image = samples["image"]
220
+ embeds_img = self.forward_image_feature(image)
221
+ atts_img = torch.ones(embeds_img.size()[:-1], dtype=torch.long).to(image.device)
222
+
223
+ prompts = samples["prompts"]
224
+ assert isinstance(prompts, (tuple, list))
225
+
226
+ inputs_embeds, attention_mask, masks_img = self.prompt_wrap(embeds_img, atts_img, prompts)
227
+
228
+ model_args = dict(
229
+ inputs_embeds=inputs_embeds,
230
+ attention_mask=attention_mask,
231
+ do_sample=False,
232
+ num_beams=num_beams,
233
+ max_new_tokens=max_len,
234
+ min_length=min_len,
235
+ eos_token_id=self.lm_tokenizer.eos_token_id,
236
+ length_penalty=length_penalty
237
+ )
238
+
239
+ outputs = self.lm_model.generate(**model_args)
240
+ output_text = self.lm_tokenizer.batch_decode(
241
+ outputs, skip_special_tokens=True
242
+ )
243
+ output_text = [text.strip() for text in output_text]
244
+
245
+ if self._apply_lemmatizer or ("apply_lemmatizer" in samples.keys() and samples["apply_lemmatizer"]):
246
+ output_text = self._lemmatize(output_text)
247
+
248
+ return output_text
249
+
250
+ def _lemmatize(self, answers):
251
+ def apply(answer):
252
+ doc = self.lemmatizer(answer)
253
+
254
+ words = []
255
+ for token in doc:
256
+ if token.pos_ in ["NOUN", "VERB"]:
257
+ words.append(token.lemma_)
258
+ else:
259
+ words.append(token.text)
260
+ answer = " ".join(words)
261
+
262
+ return answer
263
+
264
+ return [apply(answer) for answer in answers]
265
+
266
+ @property
267
+ def lemmatizer(self):
268
+ if self._lemmatizer is None:
269
+ try:
270
+ import spacy
271
+
272
+ self._lemmatizer = spacy.load("en_core_web_sm")
273
+ except ImportError:
274
+ logging.error(
275
+ """
276
+ Please install spacy and en_core_web_sm model to apply lemmatization.
277
+ python -m spacy download en_core_web_sm
278
+ OR
279
+ import spacy.cli
280
+ spacy.cli.download("en_core_web_sm")
281
+ """
282
+ )
283
+ exit(1)
284
+
285
+ return self._lemmatizer
286
+
pooler.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import random
2
+ import math
3
+ import torch
4
+ import torch.nn as nn
5
+
6
+
7
+ class Pooler(nn.Module):
8
+ def __init__(self, dim_in, dim_out, pool_out_size):
9
+ super().__init__()
10
+ if not isinstance(pool_out_size, (list, tuple)):
11
+ pool_out_size = [pool_out_size]
12
+
13
+ self.pool_out_size = pool_out_size
14
+ print("pool_out_size: {}".format(self.pool_out_size))
15
+
16
+ self.mlp = nn.Sequential(
17
+ nn.Linear(dim_in, dim_out),
18
+ nn.GELU(),
19
+ nn.Linear(dim_out, dim_out)
20
+ )
21
+
22
+ def forward(self, x):
23
+ """
24
+ Args:
25
+ x (torch.Tensor): image features
26
+ shape (b, T, F, v, D)
27
+ Returns:
28
+ shape (b, T, n, D) where n is self.num_latents
29
+ """
30
+ b, t, f, v, d = x.shape
31
+ s = int(math.sqrt(v -1))
32
+ assert t == 1 and f == 1
33
+ x = x[:, :, :, 1:, :] # remove cls_token
34
+ x_in = x.reshape(b, t, f, s, s, d)
35
+
36
+ pool_out_size = random.choice(self.pool_out_size)
37
+ if '+' in pool_out_size: # "16+32" means ensemble the pool size of 16 and 32
38
+ pool_out_size_list = [int(p) for p in pool_out_size.split('+')]
39
+ else:
40
+ pool_out_size_list = [int(pool_out_size)]
41
+ pool_out_size_list.sort(reverse=True)
42
+
43
+ x_out = []
44
+ for pool_out_size in pool_out_size_list:
45
+ x = x_in.reshape(b, t, f, pool_out_size, s//pool_out_size, pool_out_size, s//pool_out_size, d)
46
+ x = x.permute([0, 1, 2, 3, 5, 7, 4, 6]).reshape(b, t, f, pool_out_size * pool_out_size, d, -1).mean(-1)
47
+ x = self.mlp(x) # [b, t, f, h*w, d]
48
+ x = x.flatten(0, 2)
49
+ x_out.append(x)
50
+ x_out = torch.cat(x_out, dim=-2)
51
+
52
+ return x_out.unsqueeze(1)
pytorch_model-00001-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e1fa471368d11c9f444934720fd79728d675785b1c9a588e4e01b9522bc825d
3
+ size 9977684261
pytorch_model-00002-of-00002.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2bb0713b724187521e4fd37143e7c0e42a108dbec5a04f6405a37e404a24fcdf
3
+ size 7537569555
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,847 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 17514964480
4
+ },
5
+ "weight_map": {
6
+ "lm_model.lm_head.weight": "pytorch_model-00002-of-00002.bin",
7
+ "lm_model.model.embed_tokens.weight": "pytorch_model-00001-of-00002.bin",
8
+ "lm_model.model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
9
+ "lm_model.model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
10
+ "lm_model.model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
11
+ "lm_model.model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
12
+ "lm_model.model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
13
+ "lm_model.model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
14
+ "lm_model.model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
15
+ "lm_model.model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
16
+ "lm_model.model.layers.0.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
17
+ "lm_model.model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
18
+ "lm_model.model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
19
+ "lm_model.model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
20
+ "lm_model.model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
21
+ "lm_model.model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
22
+ "lm_model.model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
23
+ "lm_model.model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
24
+ "lm_model.model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
25
+ "lm_model.model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
26
+ "lm_model.model.layers.1.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
27
+ "lm_model.model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
28
+ "lm_model.model.layers.10.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
29
+ "lm_model.model.layers.10.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
30
+ "lm_model.model.layers.10.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
31
+ "lm_model.model.layers.10.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
32
+ "lm_model.model.layers.10.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
33
+ "lm_model.model.layers.10.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
34
+ "lm_model.model.layers.10.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
35
+ "lm_model.model.layers.10.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
36
+ "lm_model.model.layers.10.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
37
+ "lm_model.model.layers.10.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
38
+ "lm_model.model.layers.11.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
39
+ "lm_model.model.layers.11.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
40
+ "lm_model.model.layers.11.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
41
+ "lm_model.model.layers.11.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
42
+ "lm_model.model.layers.11.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
43
+ "lm_model.model.layers.11.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
44
+ "lm_model.model.layers.11.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
45
+ "lm_model.model.layers.11.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
46
+ "lm_model.model.layers.11.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
47
+ "lm_model.model.layers.11.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
48
+ "lm_model.model.layers.12.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
49
+ "lm_model.model.layers.12.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
50
+ "lm_model.model.layers.12.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
51
+ "lm_model.model.layers.12.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
52
+ "lm_model.model.layers.12.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
53
+ "lm_model.model.layers.12.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
54
+ "lm_model.model.layers.12.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
55
+ "lm_model.model.layers.12.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
56
+ "lm_model.model.layers.12.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
57
+ "lm_model.model.layers.12.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
58
+ "lm_model.model.layers.13.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
59
+ "lm_model.model.layers.13.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
60
+ "lm_model.model.layers.13.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
61
+ "lm_model.model.layers.13.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
62
+ "lm_model.model.layers.13.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
63
+ "lm_model.model.layers.13.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
64
+ "lm_model.model.layers.13.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
65
+ "lm_model.model.layers.13.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
66
+ "lm_model.model.layers.13.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
67
+ "lm_model.model.layers.13.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
68
+ "lm_model.model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
69
+ "lm_model.model.layers.14.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
70
+ "lm_model.model.layers.14.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
71
+ "lm_model.model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
72
+ "lm_model.model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
73
+ "lm_model.model.layers.14.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
74
+ "lm_model.model.layers.14.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
75
+ "lm_model.model.layers.14.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
76
+ "lm_model.model.layers.14.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
77
+ "lm_model.model.layers.14.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
78
+ "lm_model.model.layers.15.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
79
+ "lm_model.model.layers.15.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
80
+ "lm_model.model.layers.15.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
81
+ "lm_model.model.layers.15.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
82
+ "lm_model.model.layers.15.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
83
+ "lm_model.model.layers.15.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
84
+ "lm_model.model.layers.15.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
85
+ "lm_model.model.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
86
+ "lm_model.model.layers.15.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
87
+ "lm_model.model.layers.15.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
88
+ "lm_model.model.layers.16.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
89
+ "lm_model.model.layers.16.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
90
+ "lm_model.model.layers.16.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
91
+ "lm_model.model.layers.16.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
92
+ "lm_model.model.layers.16.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
93
+ "lm_model.model.layers.16.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
94
+ "lm_model.model.layers.16.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
95
+ "lm_model.model.layers.16.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
96
+ "lm_model.model.layers.16.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
97
+ "lm_model.model.layers.16.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
98
+ "lm_model.model.layers.17.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
99
+ "lm_model.model.layers.17.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
100
+ "lm_model.model.layers.17.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
101
+ "lm_model.model.layers.17.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
102
+ "lm_model.model.layers.17.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
103
+ "lm_model.model.layers.17.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
104
+ "lm_model.model.layers.17.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
105
+ "lm_model.model.layers.17.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
106
+ "lm_model.model.layers.17.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
107
+ "lm_model.model.layers.17.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
108
+ "lm_model.model.layers.18.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
109
+ "lm_model.model.layers.18.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
110
+ "lm_model.model.layers.18.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
111
+ "lm_model.model.layers.18.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
112
+ "lm_model.model.layers.18.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
113
+ "lm_model.model.layers.18.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
114
+ "lm_model.model.layers.18.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
115
+ "lm_model.model.layers.18.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
116
+ "lm_model.model.layers.18.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
117
+ "lm_model.model.layers.18.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
118
+ "lm_model.model.layers.19.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
119
+ "lm_model.model.layers.19.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
120
+ "lm_model.model.layers.19.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
121
+ "lm_model.model.layers.19.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
122
+ "lm_model.model.layers.19.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
123
+ "lm_model.model.layers.19.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
124
+ "lm_model.model.layers.19.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
125
+ "lm_model.model.layers.19.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
126
+ "lm_model.model.layers.19.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
127
+ "lm_model.model.layers.19.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
128
+ "lm_model.model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
129
+ "lm_model.model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
130
+ "lm_model.model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
131
+ "lm_model.model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
132
+ "lm_model.model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
133
+ "lm_model.model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
134
+ "lm_model.model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
135
+ "lm_model.model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
136
+ "lm_model.model.layers.2.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
137
+ "lm_model.model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
138
+ "lm_model.model.layers.20.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
139
+ "lm_model.model.layers.20.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
140
+ "lm_model.model.layers.20.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
141
+ "lm_model.model.layers.20.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
142
+ "lm_model.model.layers.20.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
143
+ "lm_model.model.layers.20.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
144
+ "lm_model.model.layers.20.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
145
+ "lm_model.model.layers.20.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
146
+ "lm_model.model.layers.20.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
147
+ "lm_model.model.layers.20.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
148
+ "lm_model.model.layers.21.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
149
+ "lm_model.model.layers.21.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
150
+ "lm_model.model.layers.21.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
151
+ "lm_model.model.layers.21.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
152
+ "lm_model.model.layers.21.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
153
+ "lm_model.model.layers.21.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
154
+ "lm_model.model.layers.21.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
155
+ "lm_model.model.layers.21.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
156
+ "lm_model.model.layers.21.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
157
+ "lm_model.model.layers.21.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
158
+ "lm_model.model.layers.22.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
159
+ "lm_model.model.layers.22.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
160
+ "lm_model.model.layers.22.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
161
+ "lm_model.model.layers.22.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
162
+ "lm_model.model.layers.22.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
163
+ "lm_model.model.layers.22.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
164
+ "lm_model.model.layers.22.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
165
+ "lm_model.model.layers.22.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
166
+ "lm_model.model.layers.22.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
167
+ "lm_model.model.layers.22.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
168
+ "lm_model.model.layers.23.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
169
+ "lm_model.model.layers.23.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
170
+ "lm_model.model.layers.23.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
171
+ "lm_model.model.layers.23.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
172
+ "lm_model.model.layers.23.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
173
+ "lm_model.model.layers.23.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
174
+ "lm_model.model.layers.23.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
175
+ "lm_model.model.layers.23.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
176
+ "lm_model.model.layers.23.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
177
+ "lm_model.model.layers.23.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
178
+ "lm_model.model.layers.24.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
179
+ "lm_model.model.layers.24.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
180
+ "lm_model.model.layers.24.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
181
+ "lm_model.model.layers.24.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
182
+ "lm_model.model.layers.24.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
183
+ "lm_model.model.layers.24.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
184
+ "lm_model.model.layers.24.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
185
+ "lm_model.model.layers.24.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
186
+ "lm_model.model.layers.24.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
187
+ "lm_model.model.layers.24.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
188
+ "lm_model.model.layers.25.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
189
+ "lm_model.model.layers.25.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
190
+ "lm_model.model.layers.25.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
191
+ "lm_model.model.layers.25.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
192
+ "lm_model.model.layers.25.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
193
+ "lm_model.model.layers.25.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
194
+ "lm_model.model.layers.25.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
195
+ "lm_model.model.layers.25.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
196
+ "lm_model.model.layers.25.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
197
+ "lm_model.model.layers.25.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
198
+ "lm_model.model.layers.26.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
199
+ "lm_model.model.layers.26.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
200
+ "lm_model.model.layers.26.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
201
+ "lm_model.model.layers.26.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
202
+ "lm_model.model.layers.26.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
203
+ "lm_model.model.layers.26.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
204
+ "lm_model.model.layers.26.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
205
+ "lm_model.model.layers.26.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
206
+ "lm_model.model.layers.26.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
207
+ "lm_model.model.layers.26.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
208
+ "lm_model.model.layers.27.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
209
+ "lm_model.model.layers.27.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
210
+ "lm_model.model.layers.27.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
211
+ "lm_model.model.layers.27.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
212
+ "lm_model.model.layers.27.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
213
+ "lm_model.model.layers.27.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
214
+ "lm_model.model.layers.27.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
215
+ "lm_model.model.layers.27.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
216
+ "lm_model.model.layers.27.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
217
+ "lm_model.model.layers.27.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
218
+ "lm_model.model.layers.28.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
219
+ "lm_model.model.layers.28.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
220
+ "lm_model.model.layers.28.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
221
+ "lm_model.model.layers.28.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
222
+ "lm_model.model.layers.28.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
223
+ "lm_model.model.layers.28.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
224
+ "lm_model.model.layers.28.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
225
+ "lm_model.model.layers.28.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
226
+ "lm_model.model.layers.28.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
227
+ "lm_model.model.layers.28.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
228
+ "lm_model.model.layers.29.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
229
+ "lm_model.model.layers.29.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
230
+ "lm_model.model.layers.29.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
231
+ "lm_model.model.layers.29.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
232
+ "lm_model.model.layers.29.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
233
+ "lm_model.model.layers.29.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
234
+ "lm_model.model.layers.29.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
235
+ "lm_model.model.layers.29.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
236
+ "lm_model.model.layers.29.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
237
+ "lm_model.model.layers.29.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
238
+ "lm_model.model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
239
+ "lm_model.model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
240
+ "lm_model.model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
241
+ "lm_model.model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
242
+ "lm_model.model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
243
+ "lm_model.model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
244
+ "lm_model.model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
245
+ "lm_model.model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
246
+ "lm_model.model.layers.3.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
247
+ "lm_model.model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
248
+ "lm_model.model.layers.30.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
249
+ "lm_model.model.layers.30.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
250
+ "lm_model.model.layers.30.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
251
+ "lm_model.model.layers.30.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
252
+ "lm_model.model.layers.30.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
253
+ "lm_model.model.layers.30.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
254
+ "lm_model.model.layers.30.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
255
+ "lm_model.model.layers.30.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
256
+ "lm_model.model.layers.30.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
257
+ "lm_model.model.layers.30.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
258
+ "lm_model.model.layers.31.input_layernorm.weight": "pytorch_model-00002-of-00002.bin",
259
+ "lm_model.model.layers.31.mlp.down_proj.weight": "pytorch_model-00002-of-00002.bin",
260
+ "lm_model.model.layers.31.mlp.gate_proj.weight": "pytorch_model-00002-of-00002.bin",
261
+ "lm_model.model.layers.31.mlp.up_proj.weight": "pytorch_model-00002-of-00002.bin",
262
+ "lm_model.model.layers.31.post_attention_layernorm.weight": "pytorch_model-00002-of-00002.bin",
263
+ "lm_model.model.layers.31.self_attn.k_proj.weight": "pytorch_model-00002-of-00002.bin",
264
+ "lm_model.model.layers.31.self_attn.o_proj.weight": "pytorch_model-00002-of-00002.bin",
265
+ "lm_model.model.layers.31.self_attn.q_proj.weight": "pytorch_model-00002-of-00002.bin",
266
+ "lm_model.model.layers.31.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00002.bin",
267
+ "lm_model.model.layers.31.self_attn.v_proj.weight": "pytorch_model-00002-of-00002.bin",
268
+ "lm_model.model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
269
+ "lm_model.model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
270
+ "lm_model.model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
271
+ "lm_model.model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
272
+ "lm_model.model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
273
+ "lm_model.model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
274
+ "lm_model.model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
275
+ "lm_model.model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
276
+ "lm_model.model.layers.4.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
277
+ "lm_model.model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
278
+ "lm_model.model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
279
+ "lm_model.model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
280
+ "lm_model.model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
281
+ "lm_model.model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
282
+ "lm_model.model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
283
+ "lm_model.model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
284
+ "lm_model.model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
285
+ "lm_model.model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
286
+ "lm_model.model.layers.5.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
287
+ "lm_model.model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
288
+ "lm_model.model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
289
+ "lm_model.model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
290
+ "lm_model.model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
291
+ "lm_model.model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
292
+ "lm_model.model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
293
+ "lm_model.model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
294
+ "lm_model.model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
295
+ "lm_model.model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
296
+ "lm_model.model.layers.6.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
297
+ "lm_model.model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
298
+ "lm_model.model.layers.7.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
299
+ "lm_model.model.layers.7.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
300
+ "lm_model.model.layers.7.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
301
+ "lm_model.model.layers.7.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
302
+ "lm_model.model.layers.7.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
303
+ "lm_model.model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
304
+ "lm_model.model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
305
+ "lm_model.model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
306
+ "lm_model.model.layers.7.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
307
+ "lm_model.model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
308
+ "lm_model.model.layers.8.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
309
+ "lm_model.model.layers.8.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
310
+ "lm_model.model.layers.8.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
311
+ "lm_model.model.layers.8.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
312
+ "lm_model.model.layers.8.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
313
+ "lm_model.model.layers.8.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
314
+ "lm_model.model.layers.8.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
315
+ "lm_model.model.layers.8.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
316
+ "lm_model.model.layers.8.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
317
+ "lm_model.model.layers.8.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
318
+ "lm_model.model.layers.9.input_layernorm.weight": "pytorch_model-00001-of-00002.bin",
319
+ "lm_model.model.layers.9.mlp.down_proj.weight": "pytorch_model-00001-of-00002.bin",
320
+ "lm_model.model.layers.9.mlp.gate_proj.weight": "pytorch_model-00001-of-00002.bin",
321
+ "lm_model.model.layers.9.mlp.up_proj.weight": "pytorch_model-00001-of-00002.bin",
322
+ "lm_model.model.layers.9.post_attention_layernorm.weight": "pytorch_model-00001-of-00002.bin",
323
+ "lm_model.model.layers.9.self_attn.k_proj.weight": "pytorch_model-00001-of-00002.bin",
324
+ "lm_model.model.layers.9.self_attn.o_proj.weight": "pytorch_model-00001-of-00002.bin",
325
+ "lm_model.model.layers.9.self_attn.q_proj.weight": "pytorch_model-00001-of-00002.bin",
326
+ "lm_model.model.layers.9.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00002.bin",
327
+ "lm_model.model.layers.9.self_attn.v_proj.weight": "pytorch_model-00001-of-00002.bin",
328
+ "lm_model.model.norm.weight": "pytorch_model-00002-of-00002.bin",
329
+ "ln_vision.bias": "pytorch_model-00001-of-00002.bin",
330
+ "ln_vision.weight": "pytorch_model-00001-of-00002.bin",
331
+ "pooler.mlp.0.bias": "pytorch_model-00002-of-00002.bin",
332
+ "pooler.mlp.0.weight": "pytorch_model-00002-of-00002.bin",
333
+ "pooler.mlp.2.bias": "pytorch_model-00002-of-00002.bin",
334
+ "pooler.mlp.2.weight": "pytorch_model-00002-of-00002.bin",
335
+ "visual_encoder.blocks.0.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
336
+ "visual_encoder.blocks.0.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
337
+ "visual_encoder.blocks.0.attn.q_bias": "pytorch_model-00001-of-00002.bin",
338
+ "visual_encoder.blocks.0.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
339
+ "visual_encoder.blocks.0.attn.v_bias": "pytorch_model-00001-of-00002.bin",
340
+ "visual_encoder.blocks.0.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
341
+ "visual_encoder.blocks.0.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
342
+ "visual_encoder.blocks.0.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
343
+ "visual_encoder.blocks.0.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
344
+ "visual_encoder.blocks.0.norm1.bias": "pytorch_model-00001-of-00002.bin",
345
+ "visual_encoder.blocks.0.norm1.weight": "pytorch_model-00001-of-00002.bin",
346
+ "visual_encoder.blocks.0.norm2.bias": "pytorch_model-00001-of-00002.bin",
347
+ "visual_encoder.blocks.0.norm2.weight": "pytorch_model-00001-of-00002.bin",
348
+ "visual_encoder.blocks.1.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
349
+ "visual_encoder.blocks.1.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
350
+ "visual_encoder.blocks.1.attn.q_bias": "pytorch_model-00001-of-00002.bin",
351
+ "visual_encoder.blocks.1.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
352
+ "visual_encoder.blocks.1.attn.v_bias": "pytorch_model-00001-of-00002.bin",
353
+ "visual_encoder.blocks.1.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
354
+ "visual_encoder.blocks.1.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
355
+ "visual_encoder.blocks.1.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
356
+ "visual_encoder.blocks.1.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
357
+ "visual_encoder.blocks.1.norm1.bias": "pytorch_model-00001-of-00002.bin",
358
+ "visual_encoder.blocks.1.norm1.weight": "pytorch_model-00001-of-00002.bin",
359
+ "visual_encoder.blocks.1.norm2.bias": "pytorch_model-00001-of-00002.bin",
360
+ "visual_encoder.blocks.1.norm2.weight": "pytorch_model-00001-of-00002.bin",
361
+ "visual_encoder.blocks.10.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
362
+ "visual_encoder.blocks.10.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
363
+ "visual_encoder.blocks.10.attn.q_bias": "pytorch_model-00001-of-00002.bin",
364
+ "visual_encoder.blocks.10.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
365
+ "visual_encoder.blocks.10.attn.v_bias": "pytorch_model-00001-of-00002.bin",
366
+ "visual_encoder.blocks.10.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
367
+ "visual_encoder.blocks.10.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
368
+ "visual_encoder.blocks.10.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
369
+ "visual_encoder.blocks.10.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
370
+ "visual_encoder.blocks.10.norm1.bias": "pytorch_model-00001-of-00002.bin",
371
+ "visual_encoder.blocks.10.norm1.weight": "pytorch_model-00001-of-00002.bin",
372
+ "visual_encoder.blocks.10.norm2.bias": "pytorch_model-00001-of-00002.bin",
373
+ "visual_encoder.blocks.10.norm2.weight": "pytorch_model-00001-of-00002.bin",
374
+ "visual_encoder.blocks.11.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
375
+ "visual_encoder.blocks.11.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
376
+ "visual_encoder.blocks.11.attn.q_bias": "pytorch_model-00001-of-00002.bin",
377
+ "visual_encoder.blocks.11.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
378
+ "visual_encoder.blocks.11.attn.v_bias": "pytorch_model-00001-of-00002.bin",
379
+ "visual_encoder.blocks.11.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
380
+ "visual_encoder.blocks.11.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
381
+ "visual_encoder.blocks.11.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
382
+ "visual_encoder.blocks.11.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
383
+ "visual_encoder.blocks.11.norm1.bias": "pytorch_model-00001-of-00002.bin",
384
+ "visual_encoder.blocks.11.norm1.weight": "pytorch_model-00001-of-00002.bin",
385
+ "visual_encoder.blocks.11.norm2.bias": "pytorch_model-00001-of-00002.bin",
386
+ "visual_encoder.blocks.11.norm2.weight": "pytorch_model-00001-of-00002.bin",
387
+ "visual_encoder.blocks.12.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
388
+ "visual_encoder.blocks.12.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
389
+ "visual_encoder.blocks.12.attn.q_bias": "pytorch_model-00001-of-00002.bin",
390
+ "visual_encoder.blocks.12.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
391
+ "visual_encoder.blocks.12.attn.v_bias": "pytorch_model-00001-of-00002.bin",
392
+ "visual_encoder.blocks.12.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
393
+ "visual_encoder.blocks.12.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
394
+ "visual_encoder.blocks.12.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
395
+ "visual_encoder.blocks.12.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
396
+ "visual_encoder.blocks.12.norm1.bias": "pytorch_model-00001-of-00002.bin",
397
+ "visual_encoder.blocks.12.norm1.weight": "pytorch_model-00001-of-00002.bin",
398
+ "visual_encoder.blocks.12.norm2.bias": "pytorch_model-00001-of-00002.bin",
399
+ "visual_encoder.blocks.12.norm2.weight": "pytorch_model-00001-of-00002.bin",
400
+ "visual_encoder.blocks.13.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
401
+ "visual_encoder.blocks.13.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
402
+ "visual_encoder.blocks.13.attn.q_bias": "pytorch_model-00001-of-00002.bin",
403
+ "visual_encoder.blocks.13.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
404
+ "visual_encoder.blocks.13.attn.v_bias": "pytorch_model-00001-of-00002.bin",
405
+ "visual_encoder.blocks.13.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
406
+ "visual_encoder.blocks.13.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
407
+ "visual_encoder.blocks.13.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
408
+ "visual_encoder.blocks.13.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
409
+ "visual_encoder.blocks.13.norm1.bias": "pytorch_model-00001-of-00002.bin",
410
+ "visual_encoder.blocks.13.norm1.weight": "pytorch_model-00001-of-00002.bin",
411
+ "visual_encoder.blocks.13.norm2.bias": "pytorch_model-00001-of-00002.bin",
412
+ "visual_encoder.blocks.13.norm2.weight": "pytorch_model-00001-of-00002.bin",
413
+ "visual_encoder.blocks.14.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
414
+ "visual_encoder.blocks.14.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
415
+ "visual_encoder.blocks.14.attn.q_bias": "pytorch_model-00001-of-00002.bin",
416
+ "visual_encoder.blocks.14.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
417
+ "visual_encoder.blocks.14.attn.v_bias": "pytorch_model-00001-of-00002.bin",
418
+ "visual_encoder.blocks.14.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
419
+ "visual_encoder.blocks.14.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
420
+ "visual_encoder.blocks.14.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
421
+ "visual_encoder.blocks.14.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
422
+ "visual_encoder.blocks.14.norm1.bias": "pytorch_model-00001-of-00002.bin",
423
+ "visual_encoder.blocks.14.norm1.weight": "pytorch_model-00001-of-00002.bin",
424
+ "visual_encoder.blocks.14.norm2.bias": "pytorch_model-00001-of-00002.bin",
425
+ "visual_encoder.blocks.14.norm2.weight": "pytorch_model-00001-of-00002.bin",
426
+ "visual_encoder.blocks.15.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
427
+ "visual_encoder.blocks.15.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
428
+ "visual_encoder.blocks.15.attn.q_bias": "pytorch_model-00001-of-00002.bin",
429
+ "visual_encoder.blocks.15.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
430
+ "visual_encoder.blocks.15.attn.v_bias": "pytorch_model-00001-of-00002.bin",
431
+ "visual_encoder.blocks.15.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
432
+ "visual_encoder.blocks.15.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
433
+ "visual_encoder.blocks.15.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
434
+ "visual_encoder.blocks.15.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
435
+ "visual_encoder.blocks.15.norm1.bias": "pytorch_model-00001-of-00002.bin",
436
+ "visual_encoder.blocks.15.norm1.weight": "pytorch_model-00001-of-00002.bin",
437
+ "visual_encoder.blocks.15.norm2.bias": "pytorch_model-00001-of-00002.bin",
438
+ "visual_encoder.blocks.15.norm2.weight": "pytorch_model-00001-of-00002.bin",
439
+ "visual_encoder.blocks.16.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
440
+ "visual_encoder.blocks.16.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
441
+ "visual_encoder.blocks.16.attn.q_bias": "pytorch_model-00001-of-00002.bin",
442
+ "visual_encoder.blocks.16.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
443
+ "visual_encoder.blocks.16.attn.v_bias": "pytorch_model-00001-of-00002.bin",
444
+ "visual_encoder.blocks.16.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
445
+ "visual_encoder.blocks.16.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
446
+ "visual_encoder.blocks.16.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
447
+ "visual_encoder.blocks.16.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
448
+ "visual_encoder.blocks.16.norm1.bias": "pytorch_model-00001-of-00002.bin",
449
+ "visual_encoder.blocks.16.norm1.weight": "pytorch_model-00001-of-00002.bin",
450
+ "visual_encoder.blocks.16.norm2.bias": "pytorch_model-00001-of-00002.bin",
451
+ "visual_encoder.blocks.16.norm2.weight": "pytorch_model-00001-of-00002.bin",
452
+ "visual_encoder.blocks.17.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
453
+ "visual_encoder.blocks.17.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
454
+ "visual_encoder.blocks.17.attn.q_bias": "pytorch_model-00001-of-00002.bin",
455
+ "visual_encoder.blocks.17.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
456
+ "visual_encoder.blocks.17.attn.v_bias": "pytorch_model-00001-of-00002.bin",
457
+ "visual_encoder.blocks.17.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
458
+ "visual_encoder.blocks.17.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
459
+ "visual_encoder.blocks.17.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
460
+ "visual_encoder.blocks.17.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
461
+ "visual_encoder.blocks.17.norm1.bias": "pytorch_model-00001-of-00002.bin",
462
+ "visual_encoder.blocks.17.norm1.weight": "pytorch_model-00001-of-00002.bin",
463
+ "visual_encoder.blocks.17.norm2.bias": "pytorch_model-00001-of-00002.bin",
464
+ "visual_encoder.blocks.17.norm2.weight": "pytorch_model-00001-of-00002.bin",
465
+ "visual_encoder.blocks.18.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
466
+ "visual_encoder.blocks.18.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
467
+ "visual_encoder.blocks.18.attn.q_bias": "pytorch_model-00001-of-00002.bin",
468
+ "visual_encoder.blocks.18.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
469
+ "visual_encoder.blocks.18.attn.v_bias": "pytorch_model-00001-of-00002.bin",
470
+ "visual_encoder.blocks.18.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
471
+ "visual_encoder.blocks.18.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
472
+ "visual_encoder.blocks.18.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
473
+ "visual_encoder.blocks.18.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
474
+ "visual_encoder.blocks.18.norm1.bias": "pytorch_model-00001-of-00002.bin",
475
+ "visual_encoder.blocks.18.norm1.weight": "pytorch_model-00001-of-00002.bin",
476
+ "visual_encoder.blocks.18.norm2.bias": "pytorch_model-00001-of-00002.bin",
477
+ "visual_encoder.blocks.18.norm2.weight": "pytorch_model-00001-of-00002.bin",
478
+ "visual_encoder.blocks.19.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
479
+ "visual_encoder.blocks.19.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
480
+ "visual_encoder.blocks.19.attn.q_bias": "pytorch_model-00001-of-00002.bin",
481
+ "visual_encoder.blocks.19.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
482
+ "visual_encoder.blocks.19.attn.v_bias": "pytorch_model-00001-of-00002.bin",
483
+ "visual_encoder.blocks.19.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
484
+ "visual_encoder.blocks.19.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
485
+ "visual_encoder.blocks.19.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
486
+ "visual_encoder.blocks.19.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
487
+ "visual_encoder.blocks.19.norm1.bias": "pytorch_model-00001-of-00002.bin",
488
+ "visual_encoder.blocks.19.norm1.weight": "pytorch_model-00001-of-00002.bin",
489
+ "visual_encoder.blocks.19.norm2.bias": "pytorch_model-00001-of-00002.bin",
490
+ "visual_encoder.blocks.19.norm2.weight": "pytorch_model-00001-of-00002.bin",
491
+ "visual_encoder.blocks.2.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
492
+ "visual_encoder.blocks.2.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
493
+ "visual_encoder.blocks.2.attn.q_bias": "pytorch_model-00001-of-00002.bin",
494
+ "visual_encoder.blocks.2.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
495
+ "visual_encoder.blocks.2.attn.v_bias": "pytorch_model-00001-of-00002.bin",
496
+ "visual_encoder.blocks.2.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
497
+ "visual_encoder.blocks.2.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
498
+ "visual_encoder.blocks.2.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
499
+ "visual_encoder.blocks.2.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
500
+ "visual_encoder.blocks.2.norm1.bias": "pytorch_model-00001-of-00002.bin",
501
+ "visual_encoder.blocks.2.norm1.weight": "pytorch_model-00001-of-00002.bin",
502
+ "visual_encoder.blocks.2.norm2.bias": "pytorch_model-00001-of-00002.bin",
503
+ "visual_encoder.blocks.2.norm2.weight": "pytorch_model-00001-of-00002.bin",
504
+ "visual_encoder.blocks.20.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
505
+ "visual_encoder.blocks.20.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
506
+ "visual_encoder.blocks.20.attn.q_bias": "pytorch_model-00001-of-00002.bin",
507
+ "visual_encoder.blocks.20.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
508
+ "visual_encoder.blocks.20.attn.v_bias": "pytorch_model-00001-of-00002.bin",
509
+ "visual_encoder.blocks.20.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
510
+ "visual_encoder.blocks.20.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
511
+ "visual_encoder.blocks.20.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
512
+ "visual_encoder.blocks.20.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
513
+ "visual_encoder.blocks.20.norm1.bias": "pytorch_model-00001-of-00002.bin",
514
+ "visual_encoder.blocks.20.norm1.weight": "pytorch_model-00001-of-00002.bin",
515
+ "visual_encoder.blocks.20.norm2.bias": "pytorch_model-00001-of-00002.bin",
516
+ "visual_encoder.blocks.20.norm2.weight": "pytorch_model-00001-of-00002.bin",
517
+ "visual_encoder.blocks.21.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
518
+ "visual_encoder.blocks.21.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
519
+ "visual_encoder.blocks.21.attn.q_bias": "pytorch_model-00001-of-00002.bin",
520
+ "visual_encoder.blocks.21.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
521
+ "visual_encoder.blocks.21.attn.v_bias": "pytorch_model-00001-of-00002.bin",
522
+ "visual_encoder.blocks.21.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
523
+ "visual_encoder.blocks.21.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
524
+ "visual_encoder.blocks.21.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
525
+ "visual_encoder.blocks.21.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
526
+ "visual_encoder.blocks.21.norm1.bias": "pytorch_model-00001-of-00002.bin",
527
+ "visual_encoder.blocks.21.norm1.weight": "pytorch_model-00001-of-00002.bin",
528
+ "visual_encoder.blocks.21.norm2.bias": "pytorch_model-00001-of-00002.bin",
529
+ "visual_encoder.blocks.21.norm2.weight": "pytorch_model-00001-of-00002.bin",
530
+ "visual_encoder.blocks.22.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
531
+ "visual_encoder.blocks.22.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
532
+ "visual_encoder.blocks.22.attn.q_bias": "pytorch_model-00001-of-00002.bin",
533
+ "visual_encoder.blocks.22.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
534
+ "visual_encoder.blocks.22.attn.v_bias": "pytorch_model-00001-of-00002.bin",
535
+ "visual_encoder.blocks.22.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
536
+ "visual_encoder.blocks.22.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
537
+ "visual_encoder.blocks.22.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
538
+ "visual_encoder.blocks.22.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
539
+ "visual_encoder.blocks.22.norm1.bias": "pytorch_model-00001-of-00002.bin",
540
+ "visual_encoder.blocks.22.norm1.weight": "pytorch_model-00001-of-00002.bin",
541
+ "visual_encoder.blocks.22.norm2.bias": "pytorch_model-00001-of-00002.bin",
542
+ "visual_encoder.blocks.22.norm2.weight": "pytorch_model-00001-of-00002.bin",
543
+ "visual_encoder.blocks.23.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
544
+ "visual_encoder.blocks.23.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
545
+ "visual_encoder.blocks.23.attn.q_bias": "pytorch_model-00001-of-00002.bin",
546
+ "visual_encoder.blocks.23.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
547
+ "visual_encoder.blocks.23.attn.v_bias": "pytorch_model-00001-of-00002.bin",
548
+ "visual_encoder.blocks.23.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
549
+ "visual_encoder.blocks.23.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
550
+ "visual_encoder.blocks.23.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
551
+ "visual_encoder.blocks.23.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
552
+ "visual_encoder.blocks.23.norm1.bias": "pytorch_model-00001-of-00002.bin",
553
+ "visual_encoder.blocks.23.norm1.weight": "pytorch_model-00001-of-00002.bin",
554
+ "visual_encoder.blocks.23.norm2.bias": "pytorch_model-00001-of-00002.bin",
555
+ "visual_encoder.blocks.23.norm2.weight": "pytorch_model-00001-of-00002.bin",
556
+ "visual_encoder.blocks.24.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
557
+ "visual_encoder.blocks.24.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
558
+ "visual_encoder.blocks.24.attn.q_bias": "pytorch_model-00001-of-00002.bin",
559
+ "visual_encoder.blocks.24.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
560
+ "visual_encoder.blocks.24.attn.v_bias": "pytorch_model-00001-of-00002.bin",
561
+ "visual_encoder.blocks.24.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
562
+ "visual_encoder.blocks.24.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
563
+ "visual_encoder.blocks.24.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
564
+ "visual_encoder.blocks.24.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
565
+ "visual_encoder.blocks.24.norm1.bias": "pytorch_model-00001-of-00002.bin",
566
+ "visual_encoder.blocks.24.norm1.weight": "pytorch_model-00001-of-00002.bin",
567
+ "visual_encoder.blocks.24.norm2.bias": "pytorch_model-00001-of-00002.bin",
568
+ "visual_encoder.blocks.24.norm2.weight": "pytorch_model-00001-of-00002.bin",
569
+ "visual_encoder.blocks.25.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
570
+ "visual_encoder.blocks.25.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
571
+ "visual_encoder.blocks.25.attn.q_bias": "pytorch_model-00001-of-00002.bin",
572
+ "visual_encoder.blocks.25.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
573
+ "visual_encoder.blocks.25.attn.v_bias": "pytorch_model-00001-of-00002.bin",
574
+ "visual_encoder.blocks.25.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
575
+ "visual_encoder.blocks.25.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
576
+ "visual_encoder.blocks.25.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
577
+ "visual_encoder.blocks.25.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
578
+ "visual_encoder.blocks.25.norm1.bias": "pytorch_model-00001-of-00002.bin",
579
+ "visual_encoder.blocks.25.norm1.weight": "pytorch_model-00001-of-00002.bin",
580
+ "visual_encoder.blocks.25.norm2.bias": "pytorch_model-00001-of-00002.bin",
581
+ "visual_encoder.blocks.25.norm2.weight": "pytorch_model-00001-of-00002.bin",
582
+ "visual_encoder.blocks.26.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
583
+ "visual_encoder.blocks.26.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
584
+ "visual_encoder.blocks.26.attn.q_bias": "pytorch_model-00001-of-00002.bin",
585
+ "visual_encoder.blocks.26.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
586
+ "visual_encoder.blocks.26.attn.v_bias": "pytorch_model-00001-of-00002.bin",
587
+ "visual_encoder.blocks.26.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
588
+ "visual_encoder.blocks.26.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
589
+ "visual_encoder.blocks.26.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
590
+ "visual_encoder.blocks.26.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
591
+ "visual_encoder.blocks.26.norm1.bias": "pytorch_model-00001-of-00002.bin",
592
+ "visual_encoder.blocks.26.norm1.weight": "pytorch_model-00001-of-00002.bin",
593
+ "visual_encoder.blocks.26.norm2.bias": "pytorch_model-00001-of-00002.bin",
594
+ "visual_encoder.blocks.26.norm2.weight": "pytorch_model-00001-of-00002.bin",
595
+ "visual_encoder.blocks.27.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
596
+ "visual_encoder.blocks.27.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
597
+ "visual_encoder.blocks.27.attn.q_bias": "pytorch_model-00001-of-00002.bin",
598
+ "visual_encoder.blocks.27.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
599
+ "visual_encoder.blocks.27.attn.v_bias": "pytorch_model-00001-of-00002.bin",
600
+ "visual_encoder.blocks.27.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
601
+ "visual_encoder.blocks.27.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
602
+ "visual_encoder.blocks.27.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
603
+ "visual_encoder.blocks.27.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
604
+ "visual_encoder.blocks.27.norm1.bias": "pytorch_model-00001-of-00002.bin",
605
+ "visual_encoder.blocks.27.norm1.weight": "pytorch_model-00001-of-00002.bin",
606
+ "visual_encoder.blocks.27.norm2.bias": "pytorch_model-00001-of-00002.bin",
607
+ "visual_encoder.blocks.27.norm2.weight": "pytorch_model-00001-of-00002.bin",
608
+ "visual_encoder.blocks.28.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
609
+ "visual_encoder.blocks.28.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
610
+ "visual_encoder.blocks.28.attn.q_bias": "pytorch_model-00001-of-00002.bin",
611
+ "visual_encoder.blocks.28.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
612
+ "visual_encoder.blocks.28.attn.v_bias": "pytorch_model-00001-of-00002.bin",
613
+ "visual_encoder.blocks.28.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
614
+ "visual_encoder.blocks.28.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
615
+ "visual_encoder.blocks.28.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
616
+ "visual_encoder.blocks.28.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
617
+ "visual_encoder.blocks.28.norm1.bias": "pytorch_model-00001-of-00002.bin",
618
+ "visual_encoder.blocks.28.norm1.weight": "pytorch_model-00001-of-00002.bin",
619
+ "visual_encoder.blocks.28.norm2.bias": "pytorch_model-00001-of-00002.bin",
620
+ "visual_encoder.blocks.28.norm2.weight": "pytorch_model-00001-of-00002.bin",
621
+ "visual_encoder.blocks.29.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
622
+ "visual_encoder.blocks.29.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
623
+ "visual_encoder.blocks.29.attn.q_bias": "pytorch_model-00001-of-00002.bin",
624
+ "visual_encoder.blocks.29.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
625
+ "visual_encoder.blocks.29.attn.v_bias": "pytorch_model-00001-of-00002.bin",
626
+ "visual_encoder.blocks.29.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
627
+ "visual_encoder.blocks.29.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
628
+ "visual_encoder.blocks.29.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
629
+ "visual_encoder.blocks.29.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
630
+ "visual_encoder.blocks.29.norm1.bias": "pytorch_model-00001-of-00002.bin",
631
+ "visual_encoder.blocks.29.norm1.weight": "pytorch_model-00001-of-00002.bin",
632
+ "visual_encoder.blocks.29.norm2.bias": "pytorch_model-00001-of-00002.bin",
633
+ "visual_encoder.blocks.29.norm2.weight": "pytorch_model-00001-of-00002.bin",
634
+ "visual_encoder.blocks.3.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
635
+ "visual_encoder.blocks.3.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
636
+ "visual_encoder.blocks.3.attn.q_bias": "pytorch_model-00001-of-00002.bin",
637
+ "visual_encoder.blocks.3.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
638
+ "visual_encoder.blocks.3.attn.v_bias": "pytorch_model-00001-of-00002.bin",
639
+ "visual_encoder.blocks.3.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
640
+ "visual_encoder.blocks.3.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
641
+ "visual_encoder.blocks.3.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
642
+ "visual_encoder.blocks.3.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
643
+ "visual_encoder.blocks.3.norm1.bias": "pytorch_model-00001-of-00002.bin",
644
+ "visual_encoder.blocks.3.norm1.weight": "pytorch_model-00001-of-00002.bin",
645
+ "visual_encoder.blocks.3.norm2.bias": "pytorch_model-00001-of-00002.bin",
646
+ "visual_encoder.blocks.3.norm2.weight": "pytorch_model-00001-of-00002.bin",
647
+ "visual_encoder.blocks.30.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
648
+ "visual_encoder.blocks.30.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
649
+ "visual_encoder.blocks.30.attn.q_bias": "pytorch_model-00001-of-00002.bin",
650
+ "visual_encoder.blocks.30.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
651
+ "visual_encoder.blocks.30.attn.v_bias": "pytorch_model-00001-of-00002.bin",
652
+ "visual_encoder.blocks.30.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
653
+ "visual_encoder.blocks.30.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
654
+ "visual_encoder.blocks.30.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
655
+ "visual_encoder.blocks.30.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
656
+ "visual_encoder.blocks.30.norm1.bias": "pytorch_model-00001-of-00002.bin",
657
+ "visual_encoder.blocks.30.norm1.weight": "pytorch_model-00001-of-00002.bin",
658
+ "visual_encoder.blocks.30.norm2.bias": "pytorch_model-00001-of-00002.bin",
659
+ "visual_encoder.blocks.30.norm2.weight": "pytorch_model-00001-of-00002.bin",
660
+ "visual_encoder.blocks.31.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
661
+ "visual_encoder.blocks.31.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
662
+ "visual_encoder.blocks.31.attn.q_bias": "pytorch_model-00001-of-00002.bin",
663
+ "visual_encoder.blocks.31.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
664
+ "visual_encoder.blocks.31.attn.v_bias": "pytorch_model-00001-of-00002.bin",
665
+ "visual_encoder.blocks.31.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
666
+ "visual_encoder.blocks.31.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
667
+ "visual_encoder.blocks.31.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
668
+ "visual_encoder.blocks.31.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
669
+ "visual_encoder.blocks.31.norm1.bias": "pytorch_model-00001-of-00002.bin",
670
+ "visual_encoder.blocks.31.norm1.weight": "pytorch_model-00001-of-00002.bin",
671
+ "visual_encoder.blocks.31.norm2.bias": "pytorch_model-00001-of-00002.bin",
672
+ "visual_encoder.blocks.31.norm2.weight": "pytorch_model-00001-of-00002.bin",
673
+ "visual_encoder.blocks.32.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
674
+ "visual_encoder.blocks.32.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
675
+ "visual_encoder.blocks.32.attn.q_bias": "pytorch_model-00001-of-00002.bin",
676
+ "visual_encoder.blocks.32.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
677
+ "visual_encoder.blocks.32.attn.v_bias": "pytorch_model-00001-of-00002.bin",
678
+ "visual_encoder.blocks.32.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
679
+ "visual_encoder.blocks.32.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
680
+ "visual_encoder.blocks.32.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
681
+ "visual_encoder.blocks.32.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
682
+ "visual_encoder.blocks.32.norm1.bias": "pytorch_model-00001-of-00002.bin",
683
+ "visual_encoder.blocks.32.norm1.weight": "pytorch_model-00001-of-00002.bin",
684
+ "visual_encoder.blocks.32.norm2.bias": "pytorch_model-00001-of-00002.bin",
685
+ "visual_encoder.blocks.32.norm2.weight": "pytorch_model-00001-of-00002.bin",
686
+ "visual_encoder.blocks.33.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
687
+ "visual_encoder.blocks.33.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
688
+ "visual_encoder.blocks.33.attn.q_bias": "pytorch_model-00001-of-00002.bin",
689
+ "visual_encoder.blocks.33.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
690
+ "visual_encoder.blocks.33.attn.v_bias": "pytorch_model-00001-of-00002.bin",
691
+ "visual_encoder.blocks.33.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
692
+ "visual_encoder.blocks.33.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
693
+ "visual_encoder.blocks.33.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
694
+ "visual_encoder.blocks.33.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
695
+ "visual_encoder.blocks.33.norm1.bias": "pytorch_model-00001-of-00002.bin",
696
+ "visual_encoder.blocks.33.norm1.weight": "pytorch_model-00001-of-00002.bin",
697
+ "visual_encoder.blocks.33.norm2.bias": "pytorch_model-00001-of-00002.bin",
698
+ "visual_encoder.blocks.33.norm2.weight": "pytorch_model-00001-of-00002.bin",
699
+ "visual_encoder.blocks.34.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
700
+ "visual_encoder.blocks.34.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
701
+ "visual_encoder.blocks.34.attn.q_bias": "pytorch_model-00001-of-00002.bin",
702
+ "visual_encoder.blocks.34.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
703
+ "visual_encoder.blocks.34.attn.v_bias": "pytorch_model-00001-of-00002.bin",
704
+ "visual_encoder.blocks.34.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
705
+ "visual_encoder.blocks.34.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
706
+ "visual_encoder.blocks.34.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
707
+ "visual_encoder.blocks.34.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
708
+ "visual_encoder.blocks.34.norm1.bias": "pytorch_model-00001-of-00002.bin",
709
+ "visual_encoder.blocks.34.norm1.weight": "pytorch_model-00001-of-00002.bin",
710
+ "visual_encoder.blocks.34.norm2.bias": "pytorch_model-00001-of-00002.bin",
711
+ "visual_encoder.blocks.34.norm2.weight": "pytorch_model-00001-of-00002.bin",
712
+ "visual_encoder.blocks.35.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
713
+ "visual_encoder.blocks.35.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
714
+ "visual_encoder.blocks.35.attn.q_bias": "pytorch_model-00001-of-00002.bin",
715
+ "visual_encoder.blocks.35.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
716
+ "visual_encoder.blocks.35.attn.v_bias": "pytorch_model-00001-of-00002.bin",
717
+ "visual_encoder.blocks.35.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
718
+ "visual_encoder.blocks.35.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
719
+ "visual_encoder.blocks.35.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
720
+ "visual_encoder.blocks.35.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
721
+ "visual_encoder.blocks.35.norm1.bias": "pytorch_model-00001-of-00002.bin",
722
+ "visual_encoder.blocks.35.norm1.weight": "pytorch_model-00001-of-00002.bin",
723
+ "visual_encoder.blocks.35.norm2.bias": "pytorch_model-00001-of-00002.bin",
724
+ "visual_encoder.blocks.35.norm2.weight": "pytorch_model-00001-of-00002.bin",
725
+ "visual_encoder.blocks.36.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
726
+ "visual_encoder.blocks.36.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
727
+ "visual_encoder.blocks.36.attn.q_bias": "pytorch_model-00001-of-00002.bin",
728
+ "visual_encoder.blocks.36.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
729
+ "visual_encoder.blocks.36.attn.v_bias": "pytorch_model-00001-of-00002.bin",
730
+ "visual_encoder.blocks.36.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
731
+ "visual_encoder.blocks.36.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
732
+ "visual_encoder.blocks.36.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
733
+ "visual_encoder.blocks.36.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
734
+ "visual_encoder.blocks.36.norm1.bias": "pytorch_model-00001-of-00002.bin",
735
+ "visual_encoder.blocks.36.norm1.weight": "pytorch_model-00001-of-00002.bin",
736
+ "visual_encoder.blocks.36.norm2.bias": "pytorch_model-00001-of-00002.bin",
737
+ "visual_encoder.blocks.36.norm2.weight": "pytorch_model-00001-of-00002.bin",
738
+ "visual_encoder.blocks.37.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
739
+ "visual_encoder.blocks.37.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
740
+ "visual_encoder.blocks.37.attn.q_bias": "pytorch_model-00001-of-00002.bin",
741
+ "visual_encoder.blocks.37.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
742
+ "visual_encoder.blocks.37.attn.v_bias": "pytorch_model-00001-of-00002.bin",
743
+ "visual_encoder.blocks.37.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
744
+ "visual_encoder.blocks.37.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
745
+ "visual_encoder.blocks.37.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
746
+ "visual_encoder.blocks.37.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
747
+ "visual_encoder.blocks.37.norm1.bias": "pytorch_model-00001-of-00002.bin",
748
+ "visual_encoder.blocks.37.norm1.weight": "pytorch_model-00001-of-00002.bin",
749
+ "visual_encoder.blocks.37.norm2.bias": "pytorch_model-00001-of-00002.bin",
750
+ "visual_encoder.blocks.37.norm2.weight": "pytorch_model-00001-of-00002.bin",
751
+ "visual_encoder.blocks.38.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
752
+ "visual_encoder.blocks.38.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
753
+ "visual_encoder.blocks.38.attn.q_bias": "pytorch_model-00001-of-00002.bin",
754
+ "visual_encoder.blocks.38.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
755
+ "visual_encoder.blocks.38.attn.v_bias": "pytorch_model-00001-of-00002.bin",
756
+ "visual_encoder.blocks.38.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
757
+ "visual_encoder.blocks.38.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
758
+ "visual_encoder.blocks.38.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
759
+ "visual_encoder.blocks.38.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
760
+ "visual_encoder.blocks.38.norm1.bias": "pytorch_model-00001-of-00002.bin",
761
+ "visual_encoder.blocks.38.norm1.weight": "pytorch_model-00001-of-00002.bin",
762
+ "visual_encoder.blocks.38.norm2.bias": "pytorch_model-00001-of-00002.bin",
763
+ "visual_encoder.blocks.38.norm2.weight": "pytorch_model-00001-of-00002.bin",
764
+ "visual_encoder.blocks.4.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
765
+ "visual_encoder.blocks.4.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
766
+ "visual_encoder.blocks.4.attn.q_bias": "pytorch_model-00001-of-00002.bin",
767
+ "visual_encoder.blocks.4.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
768
+ "visual_encoder.blocks.4.attn.v_bias": "pytorch_model-00001-of-00002.bin",
769
+ "visual_encoder.blocks.4.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
770
+ "visual_encoder.blocks.4.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
771
+ "visual_encoder.blocks.4.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
772
+ "visual_encoder.blocks.4.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
773
+ "visual_encoder.blocks.4.norm1.bias": "pytorch_model-00001-of-00002.bin",
774
+ "visual_encoder.blocks.4.norm1.weight": "pytorch_model-00001-of-00002.bin",
775
+ "visual_encoder.blocks.4.norm2.bias": "pytorch_model-00001-of-00002.bin",
776
+ "visual_encoder.blocks.4.norm2.weight": "pytorch_model-00001-of-00002.bin",
777
+ "visual_encoder.blocks.5.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
778
+ "visual_encoder.blocks.5.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
779
+ "visual_encoder.blocks.5.attn.q_bias": "pytorch_model-00001-of-00002.bin",
780
+ "visual_encoder.blocks.5.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
781
+ "visual_encoder.blocks.5.attn.v_bias": "pytorch_model-00001-of-00002.bin",
782
+ "visual_encoder.blocks.5.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
783
+ "visual_encoder.blocks.5.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
784
+ "visual_encoder.blocks.5.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
785
+ "visual_encoder.blocks.5.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
786
+ "visual_encoder.blocks.5.norm1.bias": "pytorch_model-00001-of-00002.bin",
787
+ "visual_encoder.blocks.5.norm1.weight": "pytorch_model-00001-of-00002.bin",
788
+ "visual_encoder.blocks.5.norm2.bias": "pytorch_model-00001-of-00002.bin",
789
+ "visual_encoder.blocks.5.norm2.weight": "pytorch_model-00001-of-00002.bin",
790
+ "visual_encoder.blocks.6.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
791
+ "visual_encoder.blocks.6.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
792
+ "visual_encoder.blocks.6.attn.q_bias": "pytorch_model-00001-of-00002.bin",
793
+ "visual_encoder.blocks.6.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
794
+ "visual_encoder.blocks.6.attn.v_bias": "pytorch_model-00001-of-00002.bin",
795
+ "visual_encoder.blocks.6.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
796
+ "visual_encoder.blocks.6.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
797
+ "visual_encoder.blocks.6.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
798
+ "visual_encoder.blocks.6.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
799
+ "visual_encoder.blocks.6.norm1.bias": "pytorch_model-00001-of-00002.bin",
800
+ "visual_encoder.blocks.6.norm1.weight": "pytorch_model-00001-of-00002.bin",
801
+ "visual_encoder.blocks.6.norm2.bias": "pytorch_model-00001-of-00002.bin",
802
+ "visual_encoder.blocks.6.norm2.weight": "pytorch_model-00001-of-00002.bin",
803
+ "visual_encoder.blocks.7.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
804
+ "visual_encoder.blocks.7.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
805
+ "visual_encoder.blocks.7.attn.q_bias": "pytorch_model-00001-of-00002.bin",
806
+ "visual_encoder.blocks.7.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
807
+ "visual_encoder.blocks.7.attn.v_bias": "pytorch_model-00001-of-00002.bin",
808
+ "visual_encoder.blocks.7.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
809
+ "visual_encoder.blocks.7.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
810
+ "visual_encoder.blocks.7.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
811
+ "visual_encoder.blocks.7.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
812
+ "visual_encoder.blocks.7.norm1.bias": "pytorch_model-00001-of-00002.bin",
813
+ "visual_encoder.blocks.7.norm1.weight": "pytorch_model-00001-of-00002.bin",
814
+ "visual_encoder.blocks.7.norm2.bias": "pytorch_model-00001-of-00002.bin",
815
+ "visual_encoder.blocks.7.norm2.weight": "pytorch_model-00001-of-00002.bin",
816
+ "visual_encoder.blocks.8.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
817
+ "visual_encoder.blocks.8.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
818
+ "visual_encoder.blocks.8.attn.q_bias": "pytorch_model-00001-of-00002.bin",
819
+ "visual_encoder.blocks.8.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
820
+ "visual_encoder.blocks.8.attn.v_bias": "pytorch_model-00001-of-00002.bin",
821
+ "visual_encoder.blocks.8.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
822
+ "visual_encoder.blocks.8.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
823
+ "visual_encoder.blocks.8.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
824
+ "visual_encoder.blocks.8.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
825
+ "visual_encoder.blocks.8.norm1.bias": "pytorch_model-00001-of-00002.bin",
826
+ "visual_encoder.blocks.8.norm1.weight": "pytorch_model-00001-of-00002.bin",
827
+ "visual_encoder.blocks.8.norm2.bias": "pytorch_model-00001-of-00002.bin",
828
+ "visual_encoder.blocks.8.norm2.weight": "pytorch_model-00001-of-00002.bin",
829
+ "visual_encoder.blocks.9.attn.proj.bias": "pytorch_model-00001-of-00002.bin",
830
+ "visual_encoder.blocks.9.attn.proj.weight": "pytorch_model-00001-of-00002.bin",
831
+ "visual_encoder.blocks.9.attn.q_bias": "pytorch_model-00001-of-00002.bin",
832
+ "visual_encoder.blocks.9.attn.qkv.weight": "pytorch_model-00001-of-00002.bin",
833
+ "visual_encoder.blocks.9.attn.v_bias": "pytorch_model-00001-of-00002.bin",
834
+ "visual_encoder.blocks.9.mlp.fc1.bias": "pytorch_model-00001-of-00002.bin",
835
+ "visual_encoder.blocks.9.mlp.fc1.weight": "pytorch_model-00001-of-00002.bin",
836
+ "visual_encoder.blocks.9.mlp.fc2.bias": "pytorch_model-00001-of-00002.bin",
837
+ "visual_encoder.blocks.9.mlp.fc2.weight": "pytorch_model-00001-of-00002.bin",
838
+ "visual_encoder.blocks.9.norm1.bias": "pytorch_model-00001-of-00002.bin",
839
+ "visual_encoder.blocks.9.norm1.weight": "pytorch_model-00001-of-00002.bin",
840
+ "visual_encoder.blocks.9.norm2.bias": "pytorch_model-00001-of-00002.bin",
841
+ "visual_encoder.blocks.9.norm2.weight": "pytorch_model-00001-of-00002.bin",
842
+ "visual_encoder.cls_token": "pytorch_model-00001-of-00002.bin",
843
+ "visual_encoder.patch_embed.proj.bias": "pytorch_model-00001-of-00002.bin",
844
+ "visual_encoder.patch_embed.proj.weight": "pytorch_model-00001-of-00002.bin",
845
+ "visual_encoder.pos_embed": "pytorch_model-00001-of-00002.bin"
846
+ }
847
+ }