File size: 25,298 Bytes
9fa359b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
# HyperTrack neural model torch classes
#
# m.mieskolainen@imperial.ac.uk, 2023

from typing import Callable, Union, Optional

import math
import torch
import torch.nn as nn
import torch.nn.functional as F

import torch_geometric
import torch_geometric.transforms as T

from torch_geometric.nn import MessagePassing
from torch_geometric.typing import Size, Tensor, OptTensor, PairTensor, PairOptTensor, OptPairTensor, Adj

from hypertrack.dmlp import MLP
import hypertrack.flows as fnn


class SuperEdgeConv(MessagePassing):
    r"""
    Custom GNN convolution operator aka 'generalized EdgeConv' (original EdgeConv: arxiv.org/abs/1801.07829)
    """
    
    def __init__(self, mlp_edge: Callable, mlp_latent: Callable, aggr: str='mean',
                 mp_attn_dim: int=0, use_residual=True, **kwargs):
        
        if aggr == 'multi-aggregation':
            aggr = torch_geometric.nn.aggr.MultiAggregation(aggrs=['sum', 'mean', 'std', 'max', 'min'], mode='attn',
                    mode_kwargs={'in_channels': mp_attn_dim, 'out_channels': mp_attn_dim, 'num_heads': 1})
        
        if aggr == 'set-transformer':
            aggr = torch_geometric.nn.aggr.SetTransformerAggregation(channels=mp_attn_dim, num_seed_points=1, 
                    num_encoder_blocks=1, num_decoder_blocks=1, heads=1, concat=False,
                    layer_norm=False, dropout=0.0)

        super().__init__(aggr=aggr, **kwargs)
        self.nn           = mlp_edge
        self.nn_final     = mlp_latent
        self.use_residual = use_residual
        
        self.reset_parameters()

        self.apply(self.init_)

    def init_(self, module):
        if type(module) in {nn.Linear}:
            #print(__name__ + f'.SuperEdgeConv: Initializing module: {module}')
            nn.init.xavier_normal_(module.weight)
            nn.init.zeros_(module.bias)
    
    def reset_parameters(self):
        torch_geometric.nn.inits.reset(self.nn)
        torch_geometric.nn.inits.reset(self.nn_final)
    
    def forward(self, x: Union[Tensor, PairTensor], edge_index: Adj,
            edge_attr: OptTensor = None, edge_weight: OptTensor = None, size: Size = None) -> Tensor:

        if edge_attr is not None and len(edge_attr.shape) == 1: # if 1-dim edge_attributes
            edge_attr = edge_attr[:,None]
        
        # Message passing
        m = self.propagate(edge_index, x=x, edge_attr=edge_attr, edge_weight=edge_weight, size=None)
        
        # Final MLP
        y = self.nn_final(torch.concat([x, m], dim=-1))
        
        # Residual connections
        if self.use_residual and (y.shape[-1] == x.shape[-1]):
            y = y + x
        
        return y

    def message(self, x_i: Tensor, x_j: Tensor, edge_attr: OptTensor, edge_weight: OptTensor) -> Tensor:
        
        # Edge features
        e1 = torch.norm(x_j - x_i, dim=-1) # Norm of the difference (invariant under rotations and translations)
        e2 = torch.sum(x_j * x_i,  dim=-1) # Dot-product (invariant under rotations but not translations)
        
        if len(e1.shape) == 1:
            e1 = e1[:,None]
            e2 = e2[:,None]
        
        if edge_attr is not None:
            m = self.nn(torch.cat([x_i, x_j - x_i, x_j * x_i, e1, e2, edge_attr], dim=-1))
        else:
            m = self.nn(torch.cat([x_i, x_j - x_i, x_j * x_i, e1, e2], dim=-1))
        
        return m if edge_weight is None else m * edge_weight.view(-1, 1)
    
    def __repr__(self):
        return f'{self.__class__.__name__} (nn={self.nn}, nn_final={self.nn_final})'


class CoordNorm(nn.Module):
    """
    Coordinate normalization for stability with GaugeEdgeConv
    """
    def __init__(self, eps = 1e-8, scale_init = 1.0):
        super().__init__()
        self.eps   = eps
        scale      = torch.zeros(1).fill_(scale_init)
        self.scale = nn.Parameter(scale)

    def forward(self, coord):
        norm = coord.norm(dim = -1, keepdim = True)
        normed_coord = coord / norm.clamp(min = self.eps)
        return normed_coord * self.scale


class GaugeEdgeConv(MessagePassing):
    r"""
    Custom GNN convolution operator aka 'E(N) equivariant GNN' (arxiv.org/abs/2102.09844)
    """
    
    def __init__(self, mlp_edge: Callable, mlp_coord: Callable, mlp_latent: Callable, coord_dim: int=0,
        update_coord: bool=True, update_latent: bool=True, aggr: str='mean', mp_attn_dim: int=0, 
        norm_coord=False, norm_coord_scale_init = 1e-2, **kwargs):
        
        kwargs.setdefault('aggr', aggr)
        super(GaugeEdgeConv, self).__init__(**kwargs)
        
        self.mlp_edge      = mlp_edge
        self.mlp_coord     = mlp_coord
        self.mlp_latent    = mlp_latent
        
        self.update_coord  = update_coord
        self.update_latent = update_latent
        
        self.coord_dim     = coord_dim
        
        # Coordinate normalization
        self.coors_norm = CoordNorm(scale_init = norm_coord_scale_init) if norm_coord else nn.Identity()
        
        self.reset_parameters()

        self.apply(self.init_)

    def init_(self, module):
        if type(module) in {nn.Linear}:
            #print(__name__ + f'.GaugeEdgeConv: Initializing module: {module}')
            nn.init.xavier_normal_(module.weight)
            nn.init.zeros_(module.bias)
    
    def reset_parameters(self):
        torch_geometric.nn.inits.reset(self.mlp_edge)
        torch_geometric.nn.inits.reset(self.mlp_coord)
        torch_geometric.nn.inits.reset(self.mlp_latent)
        

    def forward(self, x: Union[Tensor, PairTensor], edge_index: Adj,
            edge_attr: OptTensor = None, edge_weight: OptTensor = None, size: Size = None) -> Tensor:
        """
        Forward function
        """
        
        # Separate spatial (e.g. 3D-coordinates) and features
        coord, feats = x[..., 0:self.coord_dim], x[..., self.coord_dim:]
        
        # Coordinate difference: x_i - x_j
        diff_coord = coord[edge_index[0]] - coord[edge_index[1]]
        diff_norm2 = (diff_coord ** 2).sum(dim=-1, keepdim=True)
        
        if edge_attr is not None:
            if len(edge_attr.shape) == 1: # if 1-dim edge_attributes
                edge_attr = edge_attr[:,None]

            edge_attr_feats = torch.cat([edge_attr, diff_norm2], dim=-1)
        else:
            edge_attr_feats = diff_norm2
        
        # Propagation
        latent_out, coord_out = self.propagate(edge_index, x=feats, edge_attr=edge_attr_feats,
                                    edge_weight=edge_weight, coord=coord, diff_coord=diff_coord, size=None)

        return torch.cat([coord_out, latent_out], dim=-1)
    
    def message(self, x_i: Tensor, x_j: Tensor, edge_attr: OptTensor, edge_weight: OptTensor) -> Tensor:
        """
        Message passing core operation between nodes (i,j)
        """
        
        m_ij = self.mlp_edge(torch.cat([x_i, x_j, edge_attr], dim=-1))

        return m_ij if edge_weight is None else m_ij * edge_weight.view(-1, 1)

    def propagate(self, edge_index: Adj, size: Size = None, **kwargs):
        """
        The initial call to start propagating messages.
        
        Args:
            edge_index: holds the indices of a general (sparse)
                        assignment matrix of shape :obj:`[N, M]`.
            size:       (tuple, optional) if none, the size will be inferred
                        and assumed to be quadratic.
            **kwargs:   Any additional data which is needed to construct and
                        aggregate messages, and to update node embeddings.
        """
        
        # Check:
        # https://github.com/pyg-team/pytorch_geometric/blob/master/torch_geometric/nn/conv/message_passing.py
        
        size          = self._check_input(edge_index, size)
        coll_dict     = self._collect(self._user_args, edge_index, size, kwargs)
        msg_kwargs    = self.inspector.distribute('message',   coll_dict)
        aggr_kwargs   = self.inspector.distribute('aggregate', coll_dict)
        update_kwargs = self.inspector.distribute('update',    coll_dict)
        
        # Message passing of node latent embeddings
        m_ij = self.message(**msg_kwargs)
        
        if self.update_coord:
            
            # Normalize
            kwargs["diff_coord"] = self.coors_norm(kwargs["diff_coord"])
            
            # Aggregate weighted coordinates
            mhat_i    = self.aggregate(kwargs["diff_coord"] * self.mlp_coord(m_ij), **aggr_kwargs)
            coord_out = kwargs["coord"] + mhat_i # Residual connection
            
        else:
            coord_out = kwargs["coord"]
        
        
        if self.update_latent:
            
            # Aggregate message passing results
            m_i        = self.aggregate(m_ij, **aggr_kwargs)
            
            # Update latent representation
            latent_out = self.mlp_latent(torch.cat([kwargs["x"], m_i], dim = -1))
            latent_out = kwargs["x"] + latent_out # Residual connection
        else:
            latent_out = kwargs["x"]
        
        # Return tuple
        return self.update((latent_out, coord_out), **update_kwargs)

    def __repr__(self):
        return f'{self.__class__.__name__}(GaugeEdgeConv = {self.mlp_edge} | {self.mlp_coord} | {self.mlp_latent})'


class InverterNet(torch.nn.Module):
    """
    HyperTrack neural model "umbrella" class, encapsulating GNN and Transformer etc.
    """
    def __init__(self, graph_block_param={}, cluster_block_param={}):
        
        """
        conv_aggr: 'mean' seems very crucial.
        """
        super().__init__()
        
        self.training_on   = True
        
        self.coord_dim     = graph_block_param['coord_dim']   # Input dimension
        self.h_dim         = graph_block_param['h_dim']       # Intermediate latent dimension
        self.z_dim         = graph_block_param['z_dim']       # Final latent dimension
        
        self.GNN_model     = graph_block_param['GNN_model']
        self.nstack        = graph_block_param['nstack']
        
        self.edge_type     = graph_block_param['edge_type']
        MLP_fusion         = graph_block_param['MLP_fusion']
        
        self.num_edge_attr = 1 # cf. custom edge features constructed in self.encode()
        self.conv_gnn_edx  = nn.ModuleList()
        
        # Transformer node mask learnable "soft" threshold
        self.thr = nn.Parameter(torch.Tensor(1))
        nn.init.constant_(self.thr, 0.5)
        
        # 1. GNN encoder
        
        ## Model type
        if self.GNN_model == 'GaugeEdgeConv':
            
            self.m_dim     = graph_block_param['GaugeEdgeConv']['m_dim']

            MLP_GNN_edge   = graph_block_param['MLP_GNN_edge']
            MLP_GNN_coord  = graph_block_param['MLP_GNN_coord']
            MLP_GNN_latent = graph_block_param['MLP_GNN_latent']
            
            num_intrinsic_attr = 1 # distance
            
            for i in range(self.nstack):
                self.conv_gnn_edx.append(GaugeEdgeConv(
                    mlp_edge    = MLP([2*self.h_dim + self.num_edge_attr + num_intrinsic_attr, 2*self.m_dim, self.m_dim], **MLP_GNN_edge),
                    mlp_coord   = MLP([self.m_dim, 2*self.m_dim, 1], **MLP_GNN_coord),
                    mlp_latent  = MLP([self.h_dim + self.m_dim, 2*self.h_dim, self.h_dim], **MLP_GNN_latent),
                    aggr=graph_block_param['GaugeEdgeConv']['aggr'][i],
                    norm_coord=graph_block_param['GaugeEdgeConv']['norm_coord'],
                    norm_coord_scale_init=graph_block_param['GaugeEdgeConv']['norm_coord_scale_init'],
                    coord_dim=self.coord_dim))

            self.mlp_fusion_edx = MLP([self.nstack * (self.coord_dim + self.h_dim), self.h_dim, self.z_dim], **MLP_fusion)
        
        ## Model type
        elif self.GNN_model == 'SuperEdgeConv':
            
            self.m_dim     = graph_block_param['SuperEdgeConv']['m_dim']
            
            MLP_GNN_edge   = graph_block_param['MLP_GNN_edge']
            MLP_GNN_latent = graph_block_param['MLP_GNN_latent']
            
            num_intrinsic_attr = 2 # distance and dot-product
            
            self.conv_gnn_edx.append(SuperEdgeConv(
                    mlp_edge    = MLP([3*self.coord_dim + self.num_edge_attr + num_intrinsic_attr, self.m_dim, self.m_dim], **MLP_GNN_edge),
                    mlp_latent  = MLP([self.coord_dim + self.m_dim, self.h_dim, self.h_dim], **MLP_GNN_latent),
                    mp_attn_dim=self.h_dim, aggr=graph_block_param['SuperEdgeConv']['aggr'][0], use_residual=False))
            
            for i in range(1,self.nstack):
                self.conv_gnn_edx.append(SuperEdgeConv(
                    mlp_edge    = MLP([3*self.h_dim + self.num_edge_attr + num_intrinsic_attr, self.m_dim, self.m_dim], **MLP_GNN_edge),
                    mlp_latent  = MLP([self.h_dim + self.m_dim, self.h_dim, self.h_dim], **MLP_GNN_latent),
                    mp_attn_dim=self.h_dim, aggr=graph_block_param['SuperEdgeConv']['aggr'][i], use_residual=graph_block_param['SuperEdgeConv']['use_residual']))
            
            self.mlp_fusion_edx = MLP([self.nstack * self.h_dim, self.h_dim, self.z_dim], **MLP_fusion)

        else:
            raise Exception(__name__ + '.__init__: Unknown GNN_model chosen')
        
        # 2. Graph edge predictor
        MLP_correlate = graph_block_param['MLP_correlate']
        
        if   self.edge_type == 'symmetric-dot':
            self.mlp_2pt_edx = MLP([self.z_dim,   self.z_dim//2, self.z_dim//2, 1], **MLP_correlate)
        elif self.edge_type == 'symmetrized' or self.edge_type == 'asymmetric':
            self.mlp_2pt_edx = MLP([2*self.z_dim, self.z_dim//2, self.z_dim//2, 1], **MLP_correlate)
        
        # 3. Clustering predictor
        self.transformer_ccx = STransformer(**cluster_block_param)
    
    def encode(self, x, edge_index):
        """
        Encoder GNN
        """
        # Compute node degree 'custom feature' between edges
        d         = torch_geometric.utils.degree(edge_index[0,:])
        edge_attr = (d[edge_index[0,:]] - d[edge_index[1,:]]) / torch.mean(d)
        edge_attr = edge_attr.to(x.dtype)
        
        # We take each output for the parallel fusion
        x_out = [None] * self.nstack
        
        # First input [x; one-vector for the first embeddings (latents)]
        if self.GNN_model == 'GaugeEdgeConv':
            x_ = torch.cat([x, torch.ones((x.shape[0], self.h_dim), device=x.device)], dim=-1)
        else:
            x_ = x
        
        # Apply GNN layers
        x_out[0] = self.conv_gnn_edx[0](x_, edge_index, edge_attr)
        for i in range(1,self.nstack):
            x_out[i] = self.conv_gnn_edx[i](x_out[i-1], edge_index, edge_attr)
        
        return self.mlp_fusion_edx(torch.cat(x_out, dim=-1))
    
    def decode(self, z, edge_index):
        """
        Decoder of two-point correlations (edges)
        """
        if   self.edge_type == 'symmetric-dot':
            return self.mlp_2pt_edx(z[edge_index[0],:] * z[edge_index[1],:])
        
        elif self.edge_type == 'symmetrized':
            a = self.mlp_2pt_edx(torch.cat([z[edge_index[0],:], z[edge_index[1],:]], dim=-1))
            b = self.mlp_2pt_edx(torch.cat([z[edge_index[1],:], z[edge_index[0],:]], dim=-1))
            return (a + b) / 2.0

        elif self.edge_type == 'asymmetric':
            a = self.mlp_2pt_edx(torch.cat([z[edge_index[0],:], z[edge_index[1],:]], dim=-1))
            return a

    def decode_cc_ind(self, X, X_pivot, X_mask=None, X_pivot_mask=None):
        """
        Decoder of N-point node mask
        """
        
        return self.transformer_ccx(X=X, X_pivot=X_pivot, X_mask=X_mask, X_pivot_mask=X_pivot_mask)
    
    def set_model_param_grad(self, string_id='edx', requires_grad=True):
        """
        Freeze or unfreeze model parameters (for the gradient descent)
        """
        
        for name, W in self.named_parameters():   
            if string_id in name:
                W.requires_grad = requires_grad
                #print(f'Setting requires_grad={W.requires_grad} of the parameter <{name}>')
        return

    def get_model_param_grad(self, string_id='edx'):
        """
        Get model parameter state (for the gradient descent)
        """
        
        for name, W in self.named_parameters():   
            if string_id in name: # Return the state of the first
                return W.requires_grad


class MAB(nn.Module):
    """
    Attention based set Transformer block (arxiv.org/abs/1810.00825)
    """
    def __init__(self, dim_Q, dim_K, dim_V, num_heads=4, ln=True, dropout=0.0,
                 MLP_param={'act': 'relu', 'bn': False, 'dropout': 0.0, 'last_act': True}):
        super(MAB, self).__init__()
        assert dim_V % num_heads == 0, "MAB: dim_V must be divisible by num_heads"
        self.dim_V = dim_V
        self.num_heads = num_heads
        self.W_q = nn.Linear(dim_Q, dim_V)
        self.W_k = nn.Linear(dim_K, dim_V)
        self.W_v = nn.Linear(dim_K, dim_V)
        self.W_o = nn.Linear(dim_V, dim_V) # Projection layer
        
        if ln:
            self.ln0 = nn.LayerNorm(dim_V)
            self.ln1 = nn.LayerNorm(dim_V)
        
        if dropout > 0:
            self.Dropout = nn.Dropout(dropout)
        
        self.MLP = MLP([dim_V, dim_V, dim_V], **MLP_param)
    
        # We use torch default initialization here
    
    def reshape_attention_mask(self, Q, K, mask):
        """
        Reshape attention masks
        """
        total_mask = None

        if mask[0] is not None:
            qmask = mask[0].repeat(self.num_heads,1)[:,:,None]  # New shape = [# heads x # batches, # queries, 1]

        if mask[1] is not None:
            kmask = mask[1].repeat(self.num_heads,1)[:,None,:]  # New shape = [# heads x # batches, 1, # keys]
        
        if   mask[0] is None and mask[1] is not None:
            total_mask = kmask.repeat(1,Q.shape[1],1)
        elif mask[0] is not None and mask[1] is None:
            total_mask = qmask.repeat(1,1,K.shape[1])
        elif mask[0] is not None and mask[1] is not None:
            total_mask = qmask & kmask # will auto broadcast dimensions to [# heads x # batches, # queries, # keys]
        
        return total_mask

    def forward(self, Q, K, mask = (None, None)):
        """
        Q:    queries
        K:    keys
        mask: query mask [#batches x #queries], keys mask [#batches x #keys]
        """
        dim_split = self.dim_V // self.num_heads
        
        # Apply Matrix-vector multiplications
        # and do multihead splittings (reshaping)
        Q_ = torch.cat(self.W_q(Q).split(dim_split, -1), 0)
        K_ = torch.cat(self.W_k(K).split(dim_split, -1), 0)
        V_ = torch.cat(self.W_v(K).split(dim_split, -1), 0)
        
        # Dot-product attention: softmax(QK^T / sqrt(dim_V))
        QK = Q_.bmm(K_.transpose(-1,-2)) / math.sqrt(self.dim_V)  # bmm does batched matrix multiplication
        
        # Attention mask
        total_mask = self.reshape_attention_mask(Q=Q, K=K, mask=mask)
        if total_mask is not None:                 
            QK.masked_fill_(~total_mask, float('-1E6'))
        
        # Compute attention probabilities
        A = torch.softmax(QK,-1)
        
        # Residual connection of Q + multi-head attention A weighted V result
        H = Q + self.W_o(torch.cat((A.bmm(V_)).split(Q.size(0), 0),-1))
        
        # First layer normalization + Dropout
        H = H if getattr(self, 'ln0', None) is None else self.ln0(H)
        H = H if getattr(self, 'Dropout', None) is None else self.Dropout(H)
        
        # Residual connection of H + feed-forward net
        H = H + self.MLP(H)
        
        # Second layer normalization + Dropout
        H = H if getattr(self, 'ln1', None) is None else self.ln1(H)
        H = H if getattr(self, 'Dropout', None) is None else self.Dropout(H)
        
        return H


class SAB(nn.Module):
    """
    Full self-attention MAB(X,X)
    ~O(N^2)
    """
    def __init__(self, dim_in, dim_out, num_heads=4, ln=True, dropout=0.0,
                 MLP_param={'act': 'relu', 'bn': False, 'dropout': 0.0, 'last_act': True}):
        super(SAB, self).__init__()
        self.mab = MAB(dim_Q=dim_in, dim_K=dim_in, dim_V=dim_out, 
                       num_heads=num_heads, ln=ln, dropout=dropout, MLP_param=MLP_param)

    def forward(self, X, mask=None):
        return self.mab(Q=X, K=X, mask=(mask, mask))

class ISAB(nn.Module):
    """
    Faster version of SAB with inducing points
    """
    def __init__(self, dim_in, dim_out, num_inds, num_heads=4, ln=True, dropout=0.0,
                 MLP_param={'act': 'relu', 'bn': False, 'dropout': 0.0, 'last_act': True}):
        super(ISAB, self).__init__()
        self.I = nn.Parameter(torch.Tensor(1, num_inds, dim_out))
        nn.init.xavier_uniform_(self.I)
        self.mab0 = MAB(dim_Q=dim_out, dim_K=dim_in, dim_V=dim_out,
                        num_heads=num_heads, ln=ln, dropout=dropout, MLP_param=MLP_param)
        self.mab1 = MAB(dim_Q=dim_in, dim_K=dim_out, dim_V=dim_out,
                        num_heads=num_heads, ln=ln, dropout=dropout, MLP_param=MLP_param)

    def forward(self, X, mask=None):
        H = self.mab0(Q=self.I.expand(X.size(0),-1,-1), K=X, mask=(None, mask))
        H = self.mab1(Q=X, K=H, mask=(mask, None))
        return H

class PMA(nn.Module):
    """
    Adaptive pooling with "k" > 1 option (several learnable reference vectors)
    """
    def __init__(self, dim, k=1, num_heads=4, ln=True, dropout=0.0,
                 MLP_param={'act': 'relu', 'bn': False, 'dropout': 0.0, 'last_act': True}):
        super(PMA, self).__init__()
        self.S   = nn.Parameter(torch.Tensor(1, k, dim))
        nn.init.xavier_uniform_(self.S)
        self.mab = MAB(dim_Q=dim, dim_K=dim, dim_V=dim,
                       num_heads=num_heads, ln=ln, dropout=dropout, MLP_param=MLP_param)
    
    def forward(self, X, mask):
        return self.mab(Q=self.S.expand(X.size(0),-1,-1), K=X, mask=(None, mask))

class STransformer(nn.Module):
    """
    Set Transformer based clustering network
    """

    class mySequential(nn.Sequential):
        """
        Multiple inputs version of nn.Sequential customized for
        multiple self-attention layers with a (same) mask
        """
        def forward(self, *inputs):
            
            X, mask = inputs[0], inputs[1]
            for module in self._modules.values():
                X = module(X,mask)
            return X
    
    def __init__(self, in_dim, h_dim, output_dim, nstack_dec=4, 
                 MLP_enc={}, MAB_dec={}, SAB_dec={}, MLP_mask={}):
        
        super().__init__()
        
        # Encoder MLP
        self.MLP_E = MLP([in_dim, in_dim, h_dim], **MLP_enc)
        
        # Decoder
        self.mab_D = MAB(dim_Q=h_dim, dim_K=h_dim, dim_V=h_dim, **MAB_dec)

        # Decoder self-attention layers
        self.sab_stack_D = self.mySequential(*[
            self.mySequential(
                SAB(dim_in=h_dim, dim_out=h_dim, **SAB_dec)
            )
            for i in range(nstack_dec)
        ])
        
        # Final mask MLP
        self.MLP_m = MLP([h_dim, h_dim//2, h_dim//4, output_dim], **MLP_mask)
    
    def forward(self, X, X_pivot, X_mask = None, X_pivot_mask = None):
        """
        X:            input data vectors per row
        X_pivot:      pivotal data (at least one per batch)
        X_mask:       boolean (batch) mask for X (set 0 for zero-padded null elements)
        X_pivot_mask: boolean (batch) mask for X_pivot
        """
        
        # Simple encoder
        G       = self.MLP_E(X)
        G_pivot = self.MLP_E(X_pivot)
        
        # Compute cross-attention and self-attention
        H_m = self.sab_stack_D(self.mab_D(Q=G, K=G_pivot, mask=(X_mask, X_pivot_mask)), X_mask)
        
        # Decode logits
        return self.MLP_m(H_m)

class TrackFlowNet(torch.nn.Module):
    """
    Normalizing Flow Network [experimental]
    """
    def __init__(self, in_dim, num_cond_inputs=None, h_dim=64, nblocks=4, act='tanh'):
        """
        conv_aggr: 'mean' in GNN seems to work ok with Flow!
        """
        super().__init__()

        self.training_on = True
        
        # -----------------------------------
        # MAF density estimator

        modules = []
        for _ in range(nblocks):
            modules += [
                fnn.MADE(num_inputs=in_dim, num_hidden=h_dim, num_cond_inputs=num_cond_inputs, act=act),
                #fnn.BatchNormFlow(in_dim), # May cause problems in recursive use
                fnn.Reverse(in_dim)
            ]
        
        self.track_pdf = fnn.FlowSequential(*modules)
        # -----------------------------------

    def set_model_param_grad(self, string_id='pdf', requires_grad=True):
        """
        Freeze or unfreeze model parameters (for the gradient descent)
        """
        
        for name, W in self.named_parameters():   
            if string_id in name:
                W.requires_grad = requires_grad
                #print(f'Setting requires_grad={W.requires_grad} of the parameter <{name}>')
        return