Image Feature Extraction
Transformers
Safetensors
dinov2
Inference Endpoints
fepegar commited on
Commit
7d8a1e4
·
verified ·
1 Parent(s): 72881b8

Update references to the paper

Browse files
Files changed (1) hide show
  1. README.md +13 -31
README.md CHANGED
@@ -15,7 +15,7 @@ library_name: transformers
15
 
16
  RAD-DINO is a vision transformer model trained to encode chest X-rays using the self-supervised learning method [DINOv2](https://openreview.net/forum?id=a68SUt6zFt).
17
 
18
- RAD-DINO is described in detail in [RAD-DINO: Exploring Scalable Medical Image Encoders Beyond Text Supervision (F. Pérez-García, H. Sharma, S. Bond-Taylor, et al., 2024)](https://arxiv.org/abs/2401.10815).
19
 
20
  - **Developed by:** Microsoft Health Futures
21
  - **Model type:** Vision transformer
@@ -151,7 +151,7 @@ We used 16 nodes with 4 A100 GPUs each, and a batch size of 40 images per GPU.
151
 
152
  <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
153
 
154
- We refer to the [manuscript](https://arxiv.org/abs/2401.10815) for a detailed description of the training procedure.
155
 
156
  #### Preprocessing
157
 
@@ -167,27 +167,7 @@ All DICOM files were resized using B-spline interpolation so that their shorter
167
 
168
  <!-- This section describes the evaluation protocols and provides the results. -->
169
 
170
- Our evaluation is best described in the [manuscript](https://arxiv.org/abs/2401.10815).
171
-
172
- <!-- ### Testing data, factors & metrics
173
-
174
- #### Testing Data
175
-
176
- [More Information Needed]
177
-
178
- #### Factors
179
-
180
- [More Information Needed]
181
-
182
- #### Metrics
183
-
184
- [More Information Needed]
185
-
186
- ### Results
187
-
188
- [More Information Needed]
189
-
190
- #### Summary -->
191
 
192
  ## Environmental impact
193
 
@@ -226,19 +206,21 @@ We used [SimpleITK](https://simpleitk.org/) and [Pydicom](https://pydicom.github
226
  **BibTeX:**
227
 
228
  ```bibtex
229
- @misc{perezgarcia2024raddino,
230
- title={{RAD-DINO}: Exploring Scalable Medical Image Encoders Beyond Text Supervision},
231
- author={Fernando Pérez-García and Harshita Sharma and Sam Bond-Taylor and Kenza Bouzid and Valentina Salvatelli and Maximilian Ilse and Shruthi Bannur and Daniel C. Castro and Anton Schwaighofer and Matthew P. Lungren and Maria Wetscherek and Noel Codella and Stephanie L. Hyland and Javier Alvarez-Valle and Ozan Oktay},
232
- year={2024},
233
- eprint={2401.10815},
234
- archivePrefix={arXiv},
235
- primaryClass={cs.CV}
 
 
236
  }
237
  ```
238
 
239
  **APA:**
240
 
241
- > Pérez-García, F., Sharma, H., Bond-Taylor, S., Bouzid, K., Salvatelli, V., Ilse, M., Bannur, S., Castro, D.C., Schwaighofer, A., Lungren, M.P., Wetscherek, M.T., Codella, N., Hyland, S.L., Alvarez-Valle, J., & Oktay, O. (2024). *RAD-DINO: Exploring Scalable Medical Image Encoders Beyond Text Supervision*. ArXiv, abs/2401.10815.
242
 
243
  ## Model card contact
244
 
 
15
 
16
  RAD-DINO is a vision transformer model trained to encode chest X-rays using the self-supervised learning method [DINOv2](https://openreview.net/forum?id=a68SUt6zFt).
17
 
18
+ RAD-DINO is described in detail in [Exploring Scalable Medical Image Encoders Beyond Text Supervision (F. Pérez-García, H. Sharma, S. Bond-Taylor, et al., 2024)](https://www.nature.com/articles/s42256-024-00965-w).
19
 
20
  - **Developed by:** Microsoft Health Futures
21
  - **Model type:** Vision transformer
 
151
 
152
  <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
153
 
154
+ We refer to the [manuscript](https://www.nature.com/articles/s42256-024-00965-w) for a detailed description of the training procedure.
155
 
156
  #### Preprocessing
157
 
 
167
 
168
  <!-- This section describes the evaluation protocols and provides the results. -->
169
 
170
+ Our evaluation is best described in the [manuscript](https://www.nature.com/articles/s42256-024-00965-w).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
171
 
172
  ## Environmental impact
173
 
 
206
  **BibTeX:**
207
 
208
  ```bibtex
209
+ @article{perez-garcia_exploring_2025,
210
+ title = {Exploring scalable medical image encoders beyond text supervision},
211
+ issn = {2522-5839},
212
+ url = {https://doi.org/10.1038/s42256-024-00965-w},
213
+ doi = {10.1038/s42256-024-00965-w},
214
+ journal = {Nature Machine Intelligence},
215
+ author = {P{\'e}rez-Garc{\'i}a, Fernando and Sharma, Harshita and Bond-Taylor, Sam and Bouzid, Kenza and Salvatelli, Valentina and Ilse, Maximilian and Bannur, Shruthi and Castro, Daniel C. and Schwaighofer, Anton and Lungren, Matthew P. and Wetscherek, Maria Teodora and Codella, Noel and Hyland, Stephanie L. and Alvarez-Valle, Javier and Oktay, Ozan},
216
+ month = jan,
217
+ year = {2025},
218
  }
219
  ```
220
 
221
  **APA:**
222
 
223
+ > Pérez-García, F., Sharma, H., Bond-Taylor, S., Bouzid, K., Salvatelli, V., Ilse, M., Bannur, S., Castro, D. C., Schwaighofer, A., Lungren, M. P., Wetscherek, M. T., Codella, N., Hyland, S. L., Alvarez-Valle, J., & Oktay, O. (2025). *Exploring scalable medical image encoders beyond text supervision*. In Nature Machine Intelligence. Springer Science and Business Media LLC. https://doi.org/10.1038/s42256-024-00965-w
224
 
225
  ## Model card contact
226