mibalaguer commited on
Commit
4ef27b8
·
1 Parent(s): a7e1f39

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 892.68 +/- 121.61
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a65e2331e265c13719b510ac3eca429b471e381ab04f2db2b2bcaf250850161b
3
+ size 129256
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb48e065a60>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb48e065af0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb48e065b80>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb48e065c10>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fb48e065ca0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fb48e065d30>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb48e065dc0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb48e065e50>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fb48e065ee0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb48e065f70>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb48e068040>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb48e0680d0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7fb48e05da80>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1677000334406723234,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAEGBXj+qo0Q/XS4dP93cob/EcVE/uWeKPsglzD4WgVS/9KWSP3b+sz+b9wq/4g7Wv/DtPr7R3x0+ktK1vrd/+r1stpK/6f21vyhjjT8WOi0/GTqav5PxxTs9tuc/N0EEvhE8z79ZAMU+9wQUwOuDXz+bDxG+WiqqvyT0Mr9v0QI/33avvlMdUj+YSyy/7/jvvqKsLD+ACWm//fL8vkZlLT8Ob7M/f+Jiv9+JSj8Ln4A97Cqcv04qZ71HMRE/wAzTPuPkqL61TgTAzFuPP95YVj7LHh4/WQDFPltg3T7rg18/pIiiPhxEub4DCtE+zetiP9ular8eyik/YZO4vji0Wr/tnI4/BoYrv6jIGT0JjGo/vzlKP9zsDj/lI0o/wzTcvCCvrr8lnww/h7ODP9UKAj5yB5C/vEEMwJbO5T/CmGU+yx4eP1kAxT73BBTA64NfP0lS4L43mse/adu3v59n9T+wWUS/ZP3PPucfL79fxEA9WKeYPwv6Dz1QlXi/GEeRvft6pT5wMiO+DMpIP+FBGT0H+Ac/4aW7vxmlpL7vfLg+Ss3hP4rfdz7G+7i+IhTFP8seHj9ZAMU+W2DdPlqakr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADCJBU2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAv/gJvgAAAACo5+C/AAAAAChM1T0AAAAAzof0PwAAAADlAgC+AAAAAKU0+D8AAAAAsQC5PAAAAABWjeK/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjUCmNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHZ+7T0AAAAAWITrvwAAAABudHs9AAAAANqi8z8AAAAAT1QvPAAAAACgL+4/AAAAADiiw70AAAAAIMbcvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGQv2TYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAb2AK+AAAAAOGG4b8AAAAAuL4GPgAAAADGweQ/AAAAABqRrj0AAAAAUe31PwAAAADlkpc9AAAAAIpc7r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUYJS1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAfl7NPAAAAAAEGOq/AAAAANlK7DwAAAAAfxzdPwAAAAATAQE8AAAAAA8p8D8AAAAAK4p0PQAAAAClpO6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJOzZqzqrzaMAWyUTegDjAF0lEdAqhjODnNgSnV9lChoBkdAlNROZw4sE2gHTegDaAhHQKoasLuQZGd1fZQoaAZHQI0wQZQ53khoB03oA2gIR0CqIaSXdCVsdX2UKGgGR0CRn/TXrdFfaAdN6ANoCEdAqiRyrgflqHV9lChoBkdAgg4IkZ75VWgHTegDaAhHQKooZKLbYbt1fZQoaAZHQJAQM51eSjhoB03oA2gIR0CqKk2weNkwdX2UKGgGR0CRs1VNHpbEaAdN6ANoCEdAqi80hJRO13V9lChoBkdAiaYnObAk9mgHTegDaAhHQKoxAAxSHdp1fZQoaAZHQJPgSLYPGyZoB03oA2gIR0CqNGSlN1yOdX2UKGgGR0CS7eNy5qdpaAdN6ANoCEdAqjZGrjo6jnV9lChoBkdAlXb2mxdIG2gHTegDaAhHQKo8Bzr/sE91fZQoaAZHQJLLNBfKISFoB03oA2gIR0CqPsF05lvqdX2UKGgGR0CRyp5Zr56/aAdN6ANoCEdAqkQTc9GI9HV9lChoBkdAkb3PNZ/0/WgHTegDaAhHQKpGAf1YhdN1fZQoaAZHQI5PMCkoF3ZoB03oA2gIR0CqSxCROk+HdX2UKGgGR0COVyZVn27GaAdN6ANoCEdAqkznB+F10XV9lChoBkdAiyvTc6/7BWgHTegDaAhHQKpQZy08eS11fZQoaAZHQJRZYLofSx9oB03oA2gIR0CqUlLPMSsbdX2UKGgGR0CL9na0x/NJaAdN6ANoCEdAqldXg5zYEnV9lChoBkdAg3ZOn/DLsGgHTegDaAhHQKpZy9Iwudx1fZQoaAZHQJKuyD5CWu5oB03oA2gIR0CqXvGpVCHAdX2UKGgGR0CNQF7ojfNzaAdN6ANoCEdAqmH2Hk92YHV9lChoBkdAkSpjIV/MGGgHTegDaAhHQKpnKE7GNrF1fZQoaAZHQJOiV4Oc2BJoB03oA2gIR0CqaPP8qFyrdX2UKGgGR0CQuWCGvfTDaAdN6ANoCEdAqmxnFBIFvHV9lChoBkdAiZRBBqsU7GgHTegDaAhHQKpuXVSXMQp1fZQoaAZHQIjo8xsVLzxoB03oA2gIR0Cqc3L+PzWgdX2UKGgGR0CPT9zlLeyiaAdN6ANoCEdAqnVcf3evZHV9lChoBkdAgjA43eenRGgHTegDaAhHQKp50Mhouf51fZQoaAZHQId9NuUD+zdoB03oA2gIR0CqfMQO4G2UdX2UKGgGR0B+Xbhn8KoiaAdN6ANoCEdAqoM4TAWSEHV9lChoBkdAftAS75Ec82gHTegDaAhHQKqFF/8VHnV1fZQoaAZHQHUzTJhfBvdoB03oA2gIR0CqiJlvIfbLdX2UKGgGR0CGu3vNu+AVaAdN6ANoCEdAqop/7el9B3V9lChoBkdAfE3uA7Ppp2gHTegDaAhHQKqQ+fqX4TN1fZQoaAZHQICPexMWXTpoB03oA2gIR0Cqk9h7eEZjdX2UKGgGR0CEmaEq2BrfaAdN6ANoCEdAqpl4cYIjW3V9lChoBkdAftdGEPDpDGgHTegDaAhHQKqcVwmVqvh1fZQoaAZHQIjx70e2d/doB03oA2gIR0CqosnbRF7VdX2UKGgGR0CIhalolD4QaAdN6ANoCEdAqqSrR+jM3nV9lChoBkdAhO5Hh86V+2gHTegDaAhHQKqoJ3bEgnt1fZQoaAZHQIMjg9zOopBoB03oA2gIR0CqqhhEa2nbdX2UKGgGR0CLjjIfbKzSaAdN6ANoCEdAqq8aXUpd8nV9lChoBkdAiZR3UhFEzGgHTegDaAhHQKqw/B0IToN1fZQoaAZHQIjkVGTcIqtoB03oA2gIR0CqtJcfV7QcdX2UKGgGR0CKxSQtjCpFaAdN6ANoCEdAqrdTpeNT+HV9lChoBkdAj2Iz4DcM3WgHTegDaAhHQKq+0V4X40x1fZQoaAZHQIogEojOcDtoB03oA2gIR0CqwLbZvkzXdX2UKGgGR0CFZGIkZ75VaAdN6ANoCEdAqsQ715B1LnV9lChoBkdAhughbwBo3GgHTegDaAhHQKrGLqUu+RJ1fZQoaAZHQIIxyfSQYDVoB03oA2gIR0Cqyz4IjW07dX2UKGgGR0CCQCSyMUAUaAdN6ANoCEdAqs0qjN6gNHV9lChoBkfAF6DYh+vyLGgHS2FoCEdAqs5p+z+m33V9lChoBkdAgKu1JUYKpmgHTegDaAhHQKrQxcclw991fZQoaAZHQIYwfP/rB0poB03oA2gIR0Cq0qtCqp97dX2UKGgGR0CCkQYqG1x9aAdN6ANoCEdAqtoz19ORDHV9lChoBkdAiGMxLCemN2gHTegDaAhHQKreP+x4Y791fZQoaAZHQISP/EjxCppoB03oA2gIR0Cq4Jc580DVdX2UKGgGR0CD/1sXzlLfaAdN6ANoCEdAquKHwPRRdnV9lChoBkdAfuqaiKziTGgHTegDaAhHQKrngovSMLp1fZQoaAZHQIJCWkP+XJJoB03oA2gIR0Cq6pzHjp9rdX2UKGgGR0CEi/kWhysCaAdN6ANoCEdAquzc7nxJ/XV9lChoBkdAgj7CgkC3gGgHTegDaAhHQKruz863iJh1fZQoaAZHQIVKWbExZdRoB03oA2gIR0Cq9SEOy3TedX2UKGgGR0CBuEr7wazeaAdN6ANoCEdAqvnNAs052nV9lChoBkdAgIbWhAWznmgHTegDaAhHQKr8qDOC5Et1fZQoaAZHQHcXTXe3x4JoB03oA2gIR0Cq/qoCU5dXdX2UKGgGR0B+Bg1cdHUdaAdN6ANoCEdAqwPJnrY5DXV9lChoBkdAgkiCMglniGgHTegDaAhHQKsG2OXE61d1fZQoaAZHQIMHnw7T2FpoB03oA2gIR0CrCRcqnWJ8dX2UKGgGR0CBcoBp5/smaAdN6ANoCEdAqwsU65oXbnV9lChoBkdAhlzhFNL13GgHTegDaAhHQKsQdS2H+Id1fZQoaAZHQIoQirilzltoB03oA2gIR0CrFOsV+I/JdX2UKGgGR0CETc9Oh0yQaAdN6ANoCEdAqxhqfzz3AXV9lChoBkdAh6PeQ2dd3WgHTegDaAhHQKsa3zfaYeF1fZQoaAZHQIoSofwI+ntoB03oA2gIR0CrH+CudPLxdX2UKGgGR0CBm5X5FgDzaAdN6ANoCEdAqyLugnMMZ3V9lChoBkdAiny7vPTodWgHTegDaAhHQKslNzzVc2R1fZQoaAZHQI5FUINVinZoB03oA2gIR0CrJzHbRF7VdX2UKGgGR0CGzQoXKr7waAdN6ANoCEdAqyxVxAB1cXV9lChoBkdAjjlU7jkuH2gHTegDaAhHQKswBKGtZFJ1fZQoaAZHQJByiDe0ojRoB03oA2gIR0CrM1qneiztdX2UKGgGR0CR568xbjcVaAdN6ANoCEdAqzZKa/h2n3V9lChoBkdAim45HmRvFWgHTegDaAhHQKs79nRLK3d1fZQoaAZHQIq4RCKJl8RoB03oA2gIR0CrPxOmJm/WdX2UKGgGR0CPOjs5XEIgaAdN6ANoCEdAq0FT8Nx2jnV9lChoBkdAi1pg+Y+jd2gHTegDaAhHQKtDQzru6Vd1fZQoaAZHQIzbJvHcUM5oB03oA2gIR0CrSFf4IrvtdX2UKGgGR0CR6RVLi++NaAdN6ANoCEdAq0ttSOzY3HV9lChoBkdAj53XAdn002gHTegDaAhHQKtOWaLGaQV1fZQoaAZHQJEevLcKw6hoB03oA2gIR0CrUTqQA+6idX2UKGgGR0CSfAYeDFqBaAdN6ANoCEdAq1gnUYsND3V9lChoBkdAj1b7bcoH9mgHTegDaAhHQKtbOWtU4rB1fZQoaAZHQJFre2Yv38JoB03oA2gIR0CrXW+3H7xedX2UKGgGR0CP25EJBw+/aAdN6ANoCEdAq19fVqesgnV9lChoBkdAjpdKdH2AXmgHTegDaAhHQKtkP5Ec81Z1fZQoaAZHQI7UxYFJQLxoB03oA2gIR0CrZybd8Aq/dX2UKGgGR0CEj6Jj2BataAdN6ANoCEdAq2l8fDDTB3V9lChoBkdAipxeenQ6ZGgHTegDaAhHQKtrwKjSG8F1fZQoaAZHQIxc46S1Vo9oB03oA2gIR0CrczIikftAdWUu"
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de1fa3b9a87e3b76315293ed5491b8f989c386e1c7f90be1fa813a24037e35b4
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ad49562c151b8035a22d161124afa422f7050fac1d0b3e436e6bc9c0085eef96
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb48e065a60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb48e065af0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb48e065b80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb48e065c10>", "_build": "<function ActorCriticPolicy._build at 0x7fb48e065ca0>", "forward": "<function ActorCriticPolicy.forward at 0x7fb48e065d30>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb48e065dc0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb48e065e50>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb48e065ee0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb48e065f70>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb48e068040>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb48e0680d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb48e05da80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677000334406723234, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAEGBXj+qo0Q/XS4dP93cob/EcVE/uWeKPsglzD4WgVS/9KWSP3b+sz+b9wq/4g7Wv/DtPr7R3x0+ktK1vrd/+r1stpK/6f21vyhjjT8WOi0/GTqav5PxxTs9tuc/N0EEvhE8z79ZAMU+9wQUwOuDXz+bDxG+WiqqvyT0Mr9v0QI/33avvlMdUj+YSyy/7/jvvqKsLD+ACWm//fL8vkZlLT8Ob7M/f+Jiv9+JSj8Ln4A97Cqcv04qZ71HMRE/wAzTPuPkqL61TgTAzFuPP95YVj7LHh4/WQDFPltg3T7rg18/pIiiPhxEub4DCtE+zetiP9ular8eyik/YZO4vji0Wr/tnI4/BoYrv6jIGT0JjGo/vzlKP9zsDj/lI0o/wzTcvCCvrr8lnww/h7ODP9UKAj5yB5C/vEEMwJbO5T/CmGU+yx4eP1kAxT73BBTA64NfP0lS4L43mse/adu3v59n9T+wWUS/ZP3PPucfL79fxEA9WKeYPwv6Dz1QlXi/GEeRvft6pT5wMiO+DMpIP+FBGT0H+Ac/4aW7vxmlpL7vfLg+Ss3hP4rfdz7G+7i+IhTFP8seHj9ZAMU+W2DdPlqakr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADCJBU2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAv/gJvgAAAACo5+C/AAAAAChM1T0AAAAAzof0PwAAAADlAgC+AAAAAKU0+D8AAAAAsQC5PAAAAABWjeK/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAjUCmNQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHZ+7T0AAAAAWITrvwAAAABudHs9AAAAANqi8z8AAAAAT1QvPAAAAACgL+4/AAAAADiiw70AAAAAIMbcvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGQv2TYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAb2AK+AAAAAOGG4b8AAAAAuL4GPgAAAADGweQ/AAAAABqRrj0AAAAAUe31PwAAAADlkpc9AAAAAIpc7r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAUYJS1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAfl7NPAAAAAAEGOq/AAAAANlK7DwAAAAAfxzdPwAAAAATAQE8AAAAAA8p8D8AAAAAK4p0PQAAAAClpO6/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJOzZqzqrzaMAWyUTegDjAF0lEdAqhjODnNgSnV9lChoBkdAlNROZw4sE2gHTegDaAhHQKoasLuQZGd1fZQoaAZHQI0wQZQ53khoB03oA2gIR0CqIaSXdCVsdX2UKGgGR0CRn/TXrdFfaAdN6ANoCEdAqiRyrgflqHV9lChoBkdAgg4IkZ75VWgHTegDaAhHQKooZKLbYbt1fZQoaAZHQJAQM51eSjhoB03oA2gIR0CqKk2weNkwdX2UKGgGR0CRs1VNHpbEaAdN6ANoCEdAqi80hJRO13V9lChoBkdAiaYnObAk9mgHTegDaAhHQKoxAAxSHdp1fZQoaAZHQJPgSLYPGyZoB03oA2gIR0CqNGSlN1yOdX2UKGgGR0CS7eNy5qdpaAdN6ANoCEdAqjZGrjo6jnV9lChoBkdAlXb2mxdIG2gHTegDaAhHQKo8Bzr/sE91fZQoaAZHQJLLNBfKISFoB03oA2gIR0CqPsF05lvqdX2UKGgGR0CRyp5Zr56/aAdN6ANoCEdAqkQTc9GI9HV9lChoBkdAkb3PNZ/0/WgHTegDaAhHQKpGAf1YhdN1fZQoaAZHQI5PMCkoF3ZoB03oA2gIR0CqSxCROk+HdX2UKGgGR0COVyZVn27GaAdN6ANoCEdAqkznB+F10XV9lChoBkdAiyvTc6/7BWgHTegDaAhHQKpQZy08eS11fZQoaAZHQJRZYLofSx9oB03oA2gIR0CqUlLPMSsbdX2UKGgGR0CL9na0x/NJaAdN6ANoCEdAqldXg5zYEnV9lChoBkdAg3ZOn/DLsGgHTegDaAhHQKpZy9Iwudx1fZQoaAZHQJKuyD5CWu5oB03oA2gIR0CqXvGpVCHAdX2UKGgGR0CNQF7ojfNzaAdN6ANoCEdAqmH2Hk92YHV9lChoBkdAkSpjIV/MGGgHTegDaAhHQKpnKE7GNrF1fZQoaAZHQJOiV4Oc2BJoB03oA2gIR0CqaPP8qFyrdX2UKGgGR0CQuWCGvfTDaAdN6ANoCEdAqmxnFBIFvHV9lChoBkdAiZRBBqsU7GgHTegDaAhHQKpuXVSXMQp1fZQoaAZHQIjo8xsVLzxoB03oA2gIR0Cqc3L+PzWgdX2UKGgGR0CPT9zlLeyiaAdN6ANoCEdAqnVcf3evZHV9lChoBkdAgjA43eenRGgHTegDaAhHQKp50Mhouf51fZQoaAZHQId9NuUD+zdoB03oA2gIR0CqfMQO4G2UdX2UKGgGR0B+Xbhn8KoiaAdN6ANoCEdAqoM4TAWSEHV9lChoBkdAftAS75Ec82gHTegDaAhHQKqFF/8VHnV1fZQoaAZHQHUzTJhfBvdoB03oA2gIR0CqiJlvIfbLdX2UKGgGR0CGu3vNu+AVaAdN6ANoCEdAqop/7el9B3V9lChoBkdAfE3uA7Ppp2gHTegDaAhHQKqQ+fqX4TN1fZQoaAZHQICPexMWXTpoB03oA2gIR0Cqk9h7eEZjdX2UKGgGR0CEmaEq2BrfaAdN6ANoCEdAqpl4cYIjW3V9lChoBkdAftdGEPDpDGgHTegDaAhHQKqcVwmVqvh1fZQoaAZHQIjx70e2d/doB03oA2gIR0CqosnbRF7VdX2UKGgGR0CIhalolD4QaAdN6ANoCEdAqqSrR+jM3nV9lChoBkdAhO5Hh86V+2gHTegDaAhHQKqoJ3bEgnt1fZQoaAZHQIMjg9zOopBoB03oA2gIR0CqqhhEa2nbdX2UKGgGR0CLjjIfbKzSaAdN6ANoCEdAqq8aXUpd8nV9lChoBkdAiZR3UhFEzGgHTegDaAhHQKqw/B0IToN1fZQoaAZHQIjkVGTcIqtoB03oA2gIR0CqtJcfV7QcdX2UKGgGR0CKxSQtjCpFaAdN6ANoCEdAqrdTpeNT+HV9lChoBkdAj2Iz4DcM3WgHTegDaAhHQKq+0V4X40x1fZQoaAZHQIogEojOcDtoB03oA2gIR0CqwLbZvkzXdX2UKGgGR0CFZGIkZ75VaAdN6ANoCEdAqsQ715B1LnV9lChoBkdAhughbwBo3GgHTegDaAhHQKrGLqUu+RJ1fZQoaAZHQIIxyfSQYDVoB03oA2gIR0Cqyz4IjW07dX2UKGgGR0CCQCSyMUAUaAdN6ANoCEdAqs0qjN6gNHV9lChoBkfAF6DYh+vyLGgHS2FoCEdAqs5p+z+m33V9lChoBkdAgKu1JUYKpmgHTegDaAhHQKrQxcclw991fZQoaAZHQIYwfP/rB0poB03oA2gIR0Cq0qtCqp97dX2UKGgGR0CCkQYqG1x9aAdN6ANoCEdAqtoz19ORDHV9lChoBkdAiGMxLCemN2gHTegDaAhHQKreP+x4Y791fZQoaAZHQISP/EjxCppoB03oA2gIR0Cq4Jc580DVdX2UKGgGR0CD/1sXzlLfaAdN6ANoCEdAquKHwPRRdnV9lChoBkdAfuqaiKziTGgHTegDaAhHQKrngovSMLp1fZQoaAZHQIJCWkP+XJJoB03oA2gIR0Cq6pzHjp9rdX2UKGgGR0CEi/kWhysCaAdN6ANoCEdAquzc7nxJ/XV9lChoBkdAgj7CgkC3gGgHTegDaAhHQKruz863iJh1fZQoaAZHQIVKWbExZdRoB03oA2gIR0Cq9SEOy3TedX2UKGgGR0CBuEr7wazeaAdN6ANoCEdAqvnNAs052nV9lChoBkdAgIbWhAWznmgHTegDaAhHQKr8qDOC5Et1fZQoaAZHQHcXTXe3x4JoB03oA2gIR0Cq/qoCU5dXdX2UKGgGR0B+Bg1cdHUdaAdN6ANoCEdAqwPJnrY5DXV9lChoBkdAgkiCMglniGgHTegDaAhHQKsG2OXE61d1fZQoaAZHQIMHnw7T2FpoB03oA2gIR0CrCRcqnWJ8dX2UKGgGR0CBcoBp5/smaAdN6ANoCEdAqwsU65oXbnV9lChoBkdAhlzhFNL13GgHTegDaAhHQKsQdS2H+Id1fZQoaAZHQIoQirilzltoB03oA2gIR0CrFOsV+I/JdX2UKGgGR0CETc9Oh0yQaAdN6ANoCEdAqxhqfzz3AXV9lChoBkdAh6PeQ2dd3WgHTegDaAhHQKsa3zfaYeF1fZQoaAZHQIoSofwI+ntoB03oA2gIR0CrH+CudPLxdX2UKGgGR0CBm5X5FgDzaAdN6ANoCEdAqyLugnMMZ3V9lChoBkdAiny7vPTodWgHTegDaAhHQKslNzzVc2R1fZQoaAZHQI5FUINVinZoB03oA2gIR0CrJzHbRF7VdX2UKGgGR0CGzQoXKr7waAdN6ANoCEdAqyxVxAB1cXV9lChoBkdAjjlU7jkuH2gHTegDaAhHQKswBKGtZFJ1fZQoaAZHQJByiDe0ojRoB03oA2gIR0CrM1qneiztdX2UKGgGR0CR568xbjcVaAdN6ANoCEdAqzZKa/h2n3V9lChoBkdAim45HmRvFWgHTegDaAhHQKs79nRLK3d1fZQoaAZHQIq4RCKJl8RoB03oA2gIR0CrPxOmJm/WdX2UKGgGR0CPOjs5XEIgaAdN6ANoCEdAq0FT8Nx2jnV9lChoBkdAi1pg+Y+jd2gHTegDaAhHQKtDQzru6Vd1fZQoaAZHQIzbJvHcUM5oB03oA2gIR0CrSFf4IrvtdX2UKGgGR0CR6RVLi++NaAdN6ANoCEdAq0ttSOzY3HV9lChoBkdAj53XAdn002gHTegDaAhHQKtOWaLGaQV1fZQoaAZHQJEevLcKw6hoB03oA2gIR0CrUTqQA+6idX2UKGgGR0CSfAYeDFqBaAdN6ANoCEdAq1gnUYsND3V9lChoBkdAj1b7bcoH9mgHTegDaAhHQKtbOWtU4rB1fZQoaAZHQJFre2Yv38JoB03oA2gIR0CrXW+3H7xedX2UKGgGR0CP25EJBw+/aAdN6ANoCEdAq19fVqesgnV9lChoBkdAjpdKdH2AXmgHTegDaAhHQKtkP5Ec81Z1fZQoaAZHQI7UxYFJQLxoB03oA2gIR0CrZybd8Aq/dX2UKGgGR0CEj6Jj2BataAdN6ANoCEdAq2l8fDDTB3V9lChoBkdAipxeenQ6ZGgHTegDaAhHQKtrwKjSG8F1fZQoaAZHQIxc46S1Vo9oB03oA2gIR0CrczIikftAdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (554 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 892.6839316255297, "std_reward": 121.61471640642479, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-21T18:27:13.699875"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cbe32eea61737393b1e800d48b5d3763863d66c45c9601d0f2d86239b1115f38
3
+ size 2136