File size: 1,761 Bytes
7d66be2
f18e889
0807d69
f18e889
 
 
 
 
0807d69
7a19876
7d66be2
f18e889
 
0807d69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f18e889
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0807d69
 
1cb9eb1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import torch
from PIL.Image import Image
from diffusers import StableDiffusionXLPipeline, LCMScheduler
from pipelines.models import TextToImageRequest
from torch import Generator


def load_pipeline() -> StableDiffusionXLPipeline:
    pipeline: StableDiffusionXLPipeline = StableDiffusionXLPipeline.from_pretrained(
        "./models/newdream-sdxl-20",
        torch_dtype=torch.float16,
        local_files_only=True,
    ).to("cuda")
    adapter_id = "./models/lora"
    pipeline.scheduler = LCMScheduler.from_config({
        "_class_name": "LCMScheduler",
        "_diffusers_version": "0.29.0",
        "beta_end": 0.012,
        "beta_schedule": "scaled_linear",
        "beta_start": 0.00085,
        "clip_sample": False,
        "clip_sample_range": 1.0,
        "num_train_timesteps": 1000,
        "original_inference_steps": 300,
        "prediction_type": "epsilon",
        "rescale_betas_zero_snr": False,
        "sample_max_value": 1.0,
        "set_alpha_to_one": False,
        "steps_offset": 1,
        "thresholding": False,
        "timestep_scaling": 10.0,
        "timestep_spacing": "leading",
        "trained_betas": None,
        })

    # # LCMScheduler.from_config(pipeline.scheduler.config)
    pipeline.load_lora_weights(adapter_id)

    pipeline(prompt="")

    return pipeline


def infer(request: TextToImageRequest, pipeline: StableDiffusionXLPipeline) -> Image:
    generator = Generator(pipeline.device).manual_seed(request.seed) if request.seed else None

    return pipeline(
        prompt=request.prompt,
        negative_prompt=request.negative_prompt,
        width=request.width,
        height=request.height,
        generator=generator,
        num_inference_steps=4,
        guidance_scale=1.5,
    ).images[0]