--- library_name: transformers license: mit base_model: mhr2004/roberta-base-pp-1000000-1e-06-128 tags: - generated_from_trainer model-index: - name: roberta-base-pp-1000000-1e-06-128-negcommonsensebalanced-1e-06-256 results: [] --- # roberta-base-pp-1000000-1e-06-128-negcommonsensebalanced-1e-06-256 This model is a fine-tuned version of [mhr2004/roberta-base-pp-1000000-1e-06-128](https://huggingface.co/mhr2004/roberta-base-pp-1000000-1e-06-128) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4009 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 256 - eval_batch_size: 256 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.5718 | 1.0 | 795 | 0.5297 | | 0.5233 | 2.0 | 1590 | 0.4949 | | 0.4986 | 3.0 | 2385 | 0.4810 | | 0.4843 | 4.0 | 3180 | 0.4702 | | 0.4699 | 5.0 | 3975 | 0.4565 | | 0.4601 | 6.0 | 4770 | 0.4506 | | 0.454 | 7.0 | 5565 | 0.4388 | | 0.4446 | 8.0 | 6360 | 0.4368 | | 0.4353 | 9.0 | 7155 | 0.4323 | | 0.4274 | 10.0 | 7950 | 0.4255 | | 0.4219 | 11.0 | 8745 | 0.4221 | | 0.4178 | 12.0 | 9540 | 0.4173 | | 0.4128 | 13.0 | 10335 | 0.4210 | | 0.4099 | 14.0 | 11130 | 0.4135 | | 0.4071 | 15.0 | 11925 | 0.4088 | | 0.3983 | 16.0 | 12720 | 0.4081 | | 0.3979 | 17.0 | 13515 | 0.4089 | | 0.3961 | 18.0 | 14310 | 0.4083 | | 0.3946 | 19.0 | 15105 | 0.4054 | | 0.3899 | 20.0 | 15900 | 0.4030 | | 0.3907 | 21.0 | 16695 | 0.4034 | | 0.3831 | 22.0 | 17490 | 0.4006 | | 0.3846 | 23.0 | 18285 | 0.4018 | | 0.385 | 24.0 | 19080 | 0.4023 | | 0.3796 | 25.0 | 19875 | 0.4009 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0