--- library_name: transformers license: mit base_model: VietAI/vit5-base tags: - generated_from_trainer metrics: - precision - recall model-index: - name: ViNormT5 results: [] --- # ViNormT5 This model is a fine-tuned version of [VietAI/vit5-base](https://huggingface.co/VietAI/vit5-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2379 - Bleu Score: 79.1915 - Precision: 56.3919 - Recall: 56.3919 - Gen Len: 12.7861 - Err: 56.3919 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu Score | Precision | Recall | Gen Len | Err | |:-------------:|:-----:|:----:|:---------------:|:----------:|:---------:|:-------:|:-------:|:-------:| | 0.537 | 1.0 | 838 | 0.2957 | 75.5178 | 47.3118 | 47.3118 | 12.8029 | 47.3118 | | 0.2145 | 2.0 | 1676 | 0.2338 | 78.5376 | 54.5998 | 54.5998 | 12.8005 | 54.5998 | | 0.0834 | 3.0 | 2514 | 0.2379 | 79.1915 | 56.3919 | 56.3919 | 12.7861 | 56.3919 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0