memengoc commited on
Commit
8801eb6
·
verified ·
1 Parent(s): 29551d1

Upload 16 files

Browse files
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: openchat/openchat-3.5-0106
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
adapter_config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "openchat/openchat-3.5-0106",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 16,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.1,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 8,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "v_proj",
27
+ "q_proj"
28
+ ],
29
+ "task_type": "CAUSAL_LM",
30
+ "use_dora": false,
31
+ "use_rslora": false
32
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed608d82ebeea6f69a121908462bb103c744faf8c82781a2634ee63a67e4b4f6
3
+ size 13648432
added_tokens.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "<|end_of_turn|>": 32000,
3
+ "<|pad_0|>": 32001
4
+ }
byteorder ADDED
@@ -0,0 +1 @@
 
 
1
+ little
data.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1af4bd1ba258cfd54c6e2ff4560b913ee6294a7624c8eef6296d331ca9d10f1
3
+ size 4781
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e11fd45c5b46188d01abb9be2bee8d28d57fc54a33f32382c08323e33140caa
3
+ size 27370618
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f7dd1e9ba8560a772eb89a3646a6bdc96fa7e1c0dfb62ab9bf07a2514155eb9
3
+ size 14244
scaler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:baba31a5e5063037a5c811de9cb04bc62c6c5f0f5fe6720b7d681afe6500d4c1
3
+ size 988
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4155e7e2b742523e09122dece3598631178cb3544d7363337cd06e707eee56e9
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|end_of_turn|>",
4
+ "<|pad_0|>"
5
+ ],
6
+ "bos_token": {
7
+ "content": "<s>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "eos_token": {
14
+ "content": "<|end_of_turn|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ },
20
+ "unk_token": {
21
+ "content": "<unk>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false
26
+ }
27
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dadfd56d766715c61d2ef780a525ab43b8e6da4de6865bda3d95fdef5e134055
3
+ size 493443
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ },
30
+ "32000": {
31
+ "content": "<|end_of_turn|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "32001": {
39
+ "content": "<|pad_0|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": true
45
+ }
46
+ },
47
+ "additional_special_tokens": [
48
+ "<|end_of_turn|>",
49
+ "<|pad_0|>"
50
+ ],
51
+ "bos_token": "<s>",
52
+ "chat_template": "{{ bos_token }}{% for message in messages %}{{ 'GPT4 Correct ' + message['role'].title() + ': ' + message['content'] + '<|end_of_turn|>'}}{% endfor %}{% if add_generation_prompt %}{{ 'GPT4 Correct Assistant:' }}{% endif %}",
53
+ "clean_up_tokenization_spaces": false,
54
+ "eos_token": "<|end_of_turn|>",
55
+ "extra_special_tokens": {},
56
+ "legacy": true,
57
+ "model_max_length": 1000000000000000019884624838656,
58
+ "pad_token": null,
59
+ "sp_model_kwargs": {},
60
+ "spaces_between_special_tokens": false,
61
+ "tokenizer_class": "LlamaTokenizer",
62
+ "unk_token": "<unk>",
63
+ "use_default_system_prompt": true
64
+ }
trainer_state.json ADDED
@@ -0,0 +1,664 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 0.9826285313212845,
6
+ "eval_steps": 500,
7
+ "global_step": 1400,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.01403755044744692,
14
+ "grad_norm": 2.182603597640991,
15
+ "learning_rate": 4.936666666666667e-05,
16
+ "loss": 1.0775,
17
+ "mean_token_accuracy": 0.7353726878762246,
18
+ "num_tokens": 21541.0,
19
+ "step": 20
20
+ },
21
+ {
22
+ "epoch": 0.02807510089489384,
23
+ "grad_norm": 1.6199620962142944,
24
+ "learning_rate": 4.87e-05,
25
+ "loss": 0.831,
26
+ "mean_token_accuracy": 0.7886073857545852,
27
+ "num_tokens": 41741.0,
28
+ "step": 40
29
+ },
30
+ {
31
+ "epoch": 0.04211265134234076,
32
+ "grad_norm": 1.5445266962051392,
33
+ "learning_rate": 4.803333333333333e-05,
34
+ "loss": 0.8208,
35
+ "mean_token_accuracy": 0.7912300959229469,
36
+ "num_tokens": 64250.0,
37
+ "step": 60
38
+ },
39
+ {
40
+ "epoch": 0.05615020178978768,
41
+ "grad_norm": 3.0431602001190186,
42
+ "learning_rate": 4.736666666666667e-05,
43
+ "loss": 0.7495,
44
+ "mean_token_accuracy": 0.8050705902278423,
45
+ "num_tokens": 82180.0,
46
+ "step": 80
47
+ },
48
+ {
49
+ "epoch": 0.0701877522372346,
50
+ "grad_norm": 2.468738555908203,
51
+ "learning_rate": 4.6700000000000003e-05,
52
+ "loss": 0.6958,
53
+ "mean_token_accuracy": 0.8200091950595378,
54
+ "num_tokens": 103406.0,
55
+ "step": 100
56
+ },
57
+ {
58
+ "epoch": 0.08422530268468152,
59
+ "grad_norm": 2.01033878326416,
60
+ "learning_rate": 4.603333333333333e-05,
61
+ "loss": 0.6687,
62
+ "mean_token_accuracy": 0.8226511150598526,
63
+ "num_tokens": 130084.0,
64
+ "step": 120
65
+ },
66
+ {
67
+ "epoch": 0.09826285313212844,
68
+ "grad_norm": 3.93017578125,
69
+ "learning_rate": 4.536666666666667e-05,
70
+ "loss": 0.6991,
71
+ "mean_token_accuracy": 0.8165564998984337,
72
+ "num_tokens": 151551.0,
73
+ "step": 140
74
+ },
75
+ {
76
+ "epoch": 0.11230040357957537,
77
+ "grad_norm": 2.8924667835235596,
78
+ "learning_rate": 4.47e-05,
79
+ "loss": 0.7028,
80
+ "mean_token_accuracy": 0.8169861853122711,
81
+ "num_tokens": 178720.0,
82
+ "step": 160
83
+ },
84
+ {
85
+ "epoch": 0.12633795402702228,
86
+ "grad_norm": 2.084078311920166,
87
+ "learning_rate": 4.403333333333334e-05,
88
+ "loss": 0.7081,
89
+ "mean_token_accuracy": 0.8121843561530113,
90
+ "num_tokens": 203486.0,
91
+ "step": 180
92
+ },
93
+ {
94
+ "epoch": 0.1403755044744692,
95
+ "grad_norm": 3.8189709186553955,
96
+ "learning_rate": 4.3366666666666666e-05,
97
+ "loss": 0.7169,
98
+ "mean_token_accuracy": 0.8171404838562012,
99
+ "num_tokens": 225494.0,
100
+ "step": 200
101
+ },
102
+ {
103
+ "epoch": 0.15441305492191612,
104
+ "grad_norm": 1.5748624801635742,
105
+ "learning_rate": 4.27e-05,
106
+ "loss": 0.726,
107
+ "mean_token_accuracy": 0.8170952200889587,
108
+ "num_tokens": 252779.0,
109
+ "step": 220
110
+ },
111
+ {
112
+ "epoch": 0.16845060536936304,
113
+ "grad_norm": 3.446660041809082,
114
+ "learning_rate": 4.2033333333333336e-05,
115
+ "loss": 0.7028,
116
+ "mean_token_accuracy": 0.8219958022236824,
117
+ "num_tokens": 277891.0,
118
+ "step": 240
119
+ },
120
+ {
121
+ "epoch": 0.18248815581680997,
122
+ "grad_norm": 3.063415288925171,
123
+ "learning_rate": 4.136666666666667e-05,
124
+ "loss": 0.6552,
125
+ "mean_token_accuracy": 0.825613521784544,
126
+ "num_tokens": 300954.0,
127
+ "step": 260
128
+ },
129
+ {
130
+ "epoch": 0.1965257062642569,
131
+ "grad_norm": 2.5160129070281982,
132
+ "learning_rate": 4.07e-05,
133
+ "loss": 0.6667,
134
+ "mean_token_accuracy": 0.8290905028581619,
135
+ "num_tokens": 323928.0,
136
+ "step": 280
137
+ },
138
+ {
139
+ "epoch": 0.2105632567117038,
140
+ "grad_norm": 2.0370359420776367,
141
+ "learning_rate": 4.0033333333333335e-05,
142
+ "loss": 0.6895,
143
+ "mean_token_accuracy": 0.8264866299927235,
144
+ "num_tokens": 348589.0,
145
+ "step": 300
146
+ },
147
+ {
148
+ "epoch": 0.22460080715915073,
149
+ "grad_norm": 2.5861940383911133,
150
+ "learning_rate": 3.936666666666667e-05,
151
+ "loss": 0.6844,
152
+ "mean_token_accuracy": 0.8244311735033989,
153
+ "num_tokens": 373224.0,
154
+ "step": 320
155
+ },
156
+ {
157
+ "epoch": 0.23863835760659766,
158
+ "grad_norm": 3.3938305377960205,
159
+ "learning_rate": 3.8700000000000006e-05,
160
+ "loss": 0.6405,
161
+ "mean_token_accuracy": 0.8296338513493537,
162
+ "num_tokens": 396631.0,
163
+ "step": 340
164
+ },
165
+ {
166
+ "epoch": 0.25267590805404455,
167
+ "grad_norm": 5.519856929779053,
168
+ "learning_rate": 3.803333333333334e-05,
169
+ "loss": 0.6919,
170
+ "mean_token_accuracy": 0.8259296268224716,
171
+ "num_tokens": 421242.0,
172
+ "step": 360
173
+ },
174
+ {
175
+ "epoch": 0.2667134585014915,
176
+ "grad_norm": 4.32072114944458,
177
+ "learning_rate": 3.736666666666667e-05,
178
+ "loss": 0.5901,
179
+ "mean_token_accuracy": 0.8394061036407947,
180
+ "num_tokens": 447204.0,
181
+ "step": 380
182
+ },
183
+ {
184
+ "epoch": 0.2807510089489384,
185
+ "grad_norm": 3.1764180660247803,
186
+ "learning_rate": 3.6700000000000004e-05,
187
+ "loss": 0.7203,
188
+ "mean_token_accuracy": 0.8243181221187115,
189
+ "num_tokens": 472483.0,
190
+ "step": 400
191
+ },
192
+ {
193
+ "epoch": 0.2947885593963853,
194
+ "grad_norm": 2.287874937057495,
195
+ "learning_rate": 3.603333333333333e-05,
196
+ "loss": 0.6231,
197
+ "mean_token_accuracy": 0.839271092414856,
198
+ "num_tokens": 499268.0,
199
+ "step": 420
200
+ },
201
+ {
202
+ "epoch": 0.30882610984383224,
203
+ "grad_norm": 2.6682229042053223,
204
+ "learning_rate": 3.536666666666667e-05,
205
+ "loss": 0.6893,
206
+ "mean_token_accuracy": 0.8259402737021446,
207
+ "num_tokens": 526355.0,
208
+ "step": 440
209
+ },
210
+ {
211
+ "epoch": 0.32286366029127916,
212
+ "grad_norm": 2.3246352672576904,
213
+ "learning_rate": 3.4699999999999996e-05,
214
+ "loss": 0.6985,
215
+ "mean_token_accuracy": 0.8276082828640938,
216
+ "num_tokens": 554181.0,
217
+ "step": 460
218
+ },
219
+ {
220
+ "epoch": 0.3369012107387261,
221
+ "grad_norm": 3.031585931777954,
222
+ "learning_rate": 3.403333333333333e-05,
223
+ "loss": 0.6293,
224
+ "mean_token_accuracy": 0.8332549884915352,
225
+ "num_tokens": 576342.0,
226
+ "step": 480
227
+ },
228
+ {
229
+ "epoch": 0.350938761186173,
230
+ "grad_norm": 3.3900413513183594,
231
+ "learning_rate": 3.336666666666667e-05,
232
+ "loss": 0.6686,
233
+ "mean_token_accuracy": 0.8274131864309311,
234
+ "num_tokens": 602872.0,
235
+ "step": 500
236
+ },
237
+ {
238
+ "epoch": 0.36497631163361993,
239
+ "grad_norm": 3.3233566284179688,
240
+ "learning_rate": 3.27e-05,
241
+ "loss": 0.6676,
242
+ "mean_token_accuracy": 0.8297357447445393,
243
+ "num_tokens": 630050.0,
244
+ "step": 520
245
+ },
246
+ {
247
+ "epoch": 0.37901386208106685,
248
+ "grad_norm": 2.4295690059661865,
249
+ "learning_rate": 3.203333333333334e-05,
250
+ "loss": 0.5948,
251
+ "mean_token_accuracy": 0.8400285199284554,
252
+ "num_tokens": 654849.0,
253
+ "step": 540
254
+ },
255
+ {
256
+ "epoch": 0.3930514125285138,
257
+ "grad_norm": 1.6221336126327515,
258
+ "learning_rate": 3.1366666666666666e-05,
259
+ "loss": 0.642,
260
+ "mean_token_accuracy": 0.8356543615460396,
261
+ "num_tokens": 685449.0,
262
+ "step": 560
263
+ },
264
+ {
265
+ "epoch": 0.4070889629759607,
266
+ "grad_norm": 3.886709213256836,
267
+ "learning_rate": 3.07e-05,
268
+ "loss": 0.6546,
269
+ "mean_token_accuracy": 0.831772755086422,
270
+ "num_tokens": 710500.0,
271
+ "step": 580
272
+ },
273
+ {
274
+ "epoch": 0.4211265134234076,
275
+ "grad_norm": 4.270613670349121,
276
+ "learning_rate": 3.0033333333333336e-05,
277
+ "loss": 0.6791,
278
+ "mean_token_accuracy": 0.8233974911272526,
279
+ "num_tokens": 736595.0,
280
+ "step": 600
281
+ },
282
+ {
283
+ "epoch": 0.43516406387085454,
284
+ "grad_norm": 3.993839740753174,
285
+ "learning_rate": 2.936666666666667e-05,
286
+ "loss": 0.6385,
287
+ "mean_token_accuracy": 0.841860581934452,
288
+ "num_tokens": 758072.0,
289
+ "step": 620
290
+ },
291
+ {
292
+ "epoch": 0.44920161431830147,
293
+ "grad_norm": 2.41766357421875,
294
+ "learning_rate": 2.87e-05,
295
+ "loss": 0.6533,
296
+ "mean_token_accuracy": 0.8278725482523441,
297
+ "num_tokens": 779437.0,
298
+ "step": 640
299
+ },
300
+ {
301
+ "epoch": 0.4632391647657484,
302
+ "grad_norm": 2.7951812744140625,
303
+ "learning_rate": 2.8033333333333335e-05,
304
+ "loss": 0.6393,
305
+ "mean_token_accuracy": 0.8370219074189663,
306
+ "num_tokens": 804462.0,
307
+ "step": 660
308
+ },
309
+ {
310
+ "epoch": 0.4772767152131953,
311
+ "grad_norm": 3.4887661933898926,
312
+ "learning_rate": 2.7366666666666667e-05,
313
+ "loss": 0.667,
314
+ "mean_token_accuracy": 0.8294253669679165,
315
+ "num_tokens": 823375.0,
316
+ "step": 680
317
+ },
318
+ {
319
+ "epoch": 0.49131426566064224,
320
+ "grad_norm": 3.319476366043091,
321
+ "learning_rate": 2.6700000000000002e-05,
322
+ "loss": 0.6249,
323
+ "mean_token_accuracy": 0.8350663833320141,
324
+ "num_tokens": 845739.0,
325
+ "step": 700
326
+ },
327
+ {
328
+ "epoch": 0.5053518161080891,
329
+ "grad_norm": 6.183107376098633,
330
+ "learning_rate": 2.6033333333333337e-05,
331
+ "loss": 0.6231,
332
+ "mean_token_accuracy": 0.8355060666799545,
333
+ "num_tokens": 868279.0,
334
+ "step": 720
335
+ },
336
+ {
337
+ "epoch": 0.519389366555536,
338
+ "grad_norm": 4.573716640472412,
339
+ "learning_rate": 2.5366666666666665e-05,
340
+ "loss": 0.597,
341
+ "mean_token_accuracy": 0.840047723799944,
342
+ "num_tokens": 891162.0,
343
+ "step": 740
344
+ },
345
+ {
346
+ "epoch": 0.533426917002983,
347
+ "grad_norm": 2.598928451538086,
348
+ "learning_rate": 2.47e-05,
349
+ "loss": 0.6272,
350
+ "mean_token_accuracy": 0.8387389734387398,
351
+ "num_tokens": 918926.0,
352
+ "step": 760
353
+ },
354
+ {
355
+ "epoch": 0.5474644674504299,
356
+ "grad_norm": 3.8199005126953125,
357
+ "learning_rate": 2.4033333333333336e-05,
358
+ "loss": 0.6036,
359
+ "mean_token_accuracy": 0.8386851519346237,
360
+ "num_tokens": 940324.0,
361
+ "step": 780
362
+ },
363
+ {
364
+ "epoch": 0.5615020178978768,
365
+ "grad_norm": 1.9673742055892944,
366
+ "learning_rate": 2.3366666666666668e-05,
367
+ "loss": 0.6067,
368
+ "mean_token_accuracy": 0.8391704387962818,
369
+ "num_tokens": 968666.0,
370
+ "step": 800
371
+ },
372
+ {
373
+ "epoch": 0.5755395683453237,
374
+ "grad_norm": 2.7032785415649414,
375
+ "learning_rate": 2.2700000000000003e-05,
376
+ "loss": 0.5798,
377
+ "mean_token_accuracy": 0.8483829110860824,
378
+ "num_tokens": 994073.0,
379
+ "step": 820
380
+ },
381
+ {
382
+ "epoch": 0.5895771187927706,
383
+ "grad_norm": 4.700735092163086,
384
+ "learning_rate": 2.2033333333333335e-05,
385
+ "loss": 0.6122,
386
+ "mean_token_accuracy": 0.8438993617892265,
387
+ "num_tokens": 1018185.0,
388
+ "step": 840
389
+ },
390
+ {
391
+ "epoch": 0.6036146692402176,
392
+ "grad_norm": 4.28444242477417,
393
+ "learning_rate": 2.1366666666666667e-05,
394
+ "loss": 0.6391,
395
+ "mean_token_accuracy": 0.8350753806531429,
396
+ "num_tokens": 1040600.0,
397
+ "step": 860
398
+ },
399
+ {
400
+ "epoch": 0.6176522196876645,
401
+ "grad_norm": 4.160486221313477,
402
+ "learning_rate": 2.07e-05,
403
+ "loss": 0.598,
404
+ "mean_token_accuracy": 0.8390520095825196,
405
+ "num_tokens": 1064127.0,
406
+ "step": 880
407
+ },
408
+ {
409
+ "epoch": 0.6316897701351114,
410
+ "grad_norm": 2.5011801719665527,
411
+ "learning_rate": 2.0033333333333334e-05,
412
+ "loss": 0.659,
413
+ "mean_token_accuracy": 0.8372919000685215,
414
+ "num_tokens": 1090322.0,
415
+ "step": 900
416
+ },
417
+ {
418
+ "epoch": 0.6457273205825583,
419
+ "grad_norm": 3.6319570541381836,
420
+ "learning_rate": 1.9366666666666665e-05,
421
+ "loss": 0.6205,
422
+ "mean_token_accuracy": 0.8420100875198842,
423
+ "num_tokens": 1113579.0,
424
+ "step": 920
425
+ },
426
+ {
427
+ "epoch": 0.6597648710300053,
428
+ "grad_norm": 3.8766114711761475,
429
+ "learning_rate": 1.87e-05,
430
+ "loss": 0.6125,
431
+ "mean_token_accuracy": 0.8427253067493439,
432
+ "num_tokens": 1132044.0,
433
+ "step": 940
434
+ },
435
+ {
436
+ "epoch": 0.6738024214774522,
437
+ "grad_norm": 3.2334253787994385,
438
+ "learning_rate": 1.8033333333333336e-05,
439
+ "loss": 0.6321,
440
+ "mean_token_accuracy": 0.8387841299176216,
441
+ "num_tokens": 1153969.0,
442
+ "step": 960
443
+ },
444
+ {
445
+ "epoch": 0.6878399719248991,
446
+ "grad_norm": 3.2974843978881836,
447
+ "learning_rate": 1.7366666666666668e-05,
448
+ "loss": 0.611,
449
+ "mean_token_accuracy": 0.8420861139893532,
450
+ "num_tokens": 1174179.0,
451
+ "step": 980
452
+ },
453
+ {
454
+ "epoch": 0.701877522372346,
455
+ "grad_norm": 2.2505669593811035,
456
+ "learning_rate": 1.6700000000000003e-05,
457
+ "loss": 0.6781,
458
+ "mean_token_accuracy": 0.8258809894323349,
459
+ "num_tokens": 1194991.0,
460
+ "step": 1000
461
+ },
462
+ {
463
+ "epoch": 0.7159150728197929,
464
+ "grad_norm": 2.249610662460327,
465
+ "learning_rate": 1.6033333333333335e-05,
466
+ "loss": 0.5948,
467
+ "mean_token_accuracy": 0.8416233405470848,
468
+ "num_tokens": 1219197.0,
469
+ "step": 1020
470
+ },
471
+ {
472
+ "epoch": 0.7299526232672399,
473
+ "grad_norm": 2.6272480487823486,
474
+ "learning_rate": 1.536666666666667e-05,
475
+ "loss": 0.6496,
476
+ "mean_token_accuracy": 0.8354081869125366,
477
+ "num_tokens": 1242371.0,
478
+ "step": 1040
479
+ },
480
+ {
481
+ "epoch": 0.7439901737146868,
482
+ "grad_norm": 2.5832204818725586,
483
+ "learning_rate": 1.47e-05,
484
+ "loss": 0.6281,
485
+ "mean_token_accuracy": 0.8409083731472492,
486
+ "num_tokens": 1264243.0,
487
+ "step": 1060
488
+ },
489
+ {
490
+ "epoch": 0.7580277241621337,
491
+ "grad_norm": 2.5525519847869873,
492
+ "learning_rate": 1.4033333333333335e-05,
493
+ "loss": 0.5765,
494
+ "mean_token_accuracy": 0.8413878485560418,
495
+ "num_tokens": 1289190.0,
496
+ "step": 1080
497
+ },
498
+ {
499
+ "epoch": 0.7720652746095806,
500
+ "grad_norm": 2.7448742389678955,
501
+ "learning_rate": 1.3366666666666667e-05,
502
+ "loss": 0.5842,
503
+ "mean_token_accuracy": 0.8508293248713017,
504
+ "num_tokens": 1312081.0,
505
+ "step": 1100
506
+ },
507
+ {
508
+ "epoch": 0.7861028250570276,
509
+ "grad_norm": 3.093715190887451,
510
+ "learning_rate": 1.27e-05,
511
+ "loss": 0.619,
512
+ "mean_token_accuracy": 0.8391894645988941,
513
+ "num_tokens": 1336299.0,
514
+ "step": 1120
515
+ },
516
+ {
517
+ "epoch": 0.8001403755044745,
518
+ "grad_norm": 3.5069360733032227,
519
+ "learning_rate": 1.2033333333333334e-05,
520
+ "loss": 0.662,
521
+ "mean_token_accuracy": 0.8379314132034779,
522
+ "num_tokens": 1356089.0,
523
+ "step": 1140
524
+ },
525
+ {
526
+ "epoch": 0.8141779259519214,
527
+ "grad_norm": 3.438401222229004,
528
+ "learning_rate": 1.1366666666666667e-05,
529
+ "loss": 0.6105,
530
+ "mean_token_accuracy": 0.8439491540193558,
531
+ "num_tokens": 1378743.0,
532
+ "step": 1160
533
+ },
534
+ {
535
+ "epoch": 0.8282154763993683,
536
+ "grad_norm": 3.4282867908477783,
537
+ "learning_rate": 1.0700000000000001e-05,
538
+ "loss": 0.5596,
539
+ "mean_token_accuracy": 0.8491624429821968,
540
+ "num_tokens": 1403734.0,
541
+ "step": 1180
542
+ },
543
+ {
544
+ "epoch": 0.8422530268468152,
545
+ "grad_norm": 2.1889116764068604,
546
+ "learning_rate": 1.0033333333333333e-05,
547
+ "loss": 0.5936,
548
+ "mean_token_accuracy": 0.8432723931968212,
549
+ "num_tokens": 1425665.0,
550
+ "step": 1200
551
+ },
552
+ {
553
+ "epoch": 0.8562905772942622,
554
+ "grad_norm": 4.925279140472412,
555
+ "learning_rate": 9.366666666666666e-06,
556
+ "loss": 0.5934,
557
+ "mean_token_accuracy": 0.8465121522545814,
558
+ "num_tokens": 1448683.0,
559
+ "step": 1220
560
+ },
561
+ {
562
+ "epoch": 0.8703281277417091,
563
+ "grad_norm": 2.0163872241973877,
564
+ "learning_rate": 8.7e-06,
565
+ "loss": 0.6448,
566
+ "mean_token_accuracy": 0.8441565148532391,
567
+ "num_tokens": 1472899.0,
568
+ "step": 1240
569
+ },
570
+ {
571
+ "epoch": 0.884365678189156,
572
+ "grad_norm": 2.7730228900909424,
573
+ "learning_rate": 8.033333333333335e-06,
574
+ "loss": 0.5927,
575
+ "mean_token_accuracy": 0.8459630504250526,
576
+ "num_tokens": 1495100.0,
577
+ "step": 1260
578
+ },
579
+ {
580
+ "epoch": 0.8984032286366029,
581
+ "grad_norm": 4.159714698791504,
582
+ "learning_rate": 7.3666666666666676e-06,
583
+ "loss": 0.5662,
584
+ "mean_token_accuracy": 0.8462217047810554,
585
+ "num_tokens": 1520586.0,
586
+ "step": 1280
587
+ },
588
+ {
589
+ "epoch": 0.9124407790840499,
590
+ "grad_norm": 3.4387991428375244,
591
+ "learning_rate": 6.700000000000001e-06,
592
+ "loss": 0.5935,
593
+ "mean_token_accuracy": 0.8469379253685474,
594
+ "num_tokens": 1543417.0,
595
+ "step": 1300
596
+ },
597
+ {
598
+ "epoch": 0.9264783295314968,
599
+ "grad_norm": 3.399153470993042,
600
+ "learning_rate": 6.033333333333334e-06,
601
+ "loss": 0.6468,
602
+ "mean_token_accuracy": 0.8329462945461273,
603
+ "num_tokens": 1566253.0,
604
+ "step": 1320
605
+ },
606
+ {
607
+ "epoch": 0.9405158799789437,
608
+ "grad_norm": 5.575164318084717,
609
+ "learning_rate": 5.366666666666667e-06,
610
+ "loss": 0.6146,
611
+ "mean_token_accuracy": 0.8445694409310818,
612
+ "num_tokens": 1587912.0,
613
+ "step": 1340
614
+ },
615
+ {
616
+ "epoch": 0.9545534304263906,
617
+ "grad_norm": 4.406199932098389,
618
+ "learning_rate": 4.7e-06,
619
+ "loss": 0.6114,
620
+ "mean_token_accuracy": 0.8456776596605777,
621
+ "num_tokens": 1613084.0,
622
+ "step": 1360
623
+ },
624
+ {
625
+ "epoch": 0.9685909808738375,
626
+ "grad_norm": 2.3013195991516113,
627
+ "learning_rate": 4.033333333333333e-06,
628
+ "loss": 0.6377,
629
+ "mean_token_accuracy": 0.8406077317893506,
630
+ "num_tokens": 1636349.0,
631
+ "step": 1380
632
+ },
633
+ {
634
+ "epoch": 0.9826285313212845,
635
+ "grad_norm": 2.496525526046753,
636
+ "learning_rate": 3.3666666666666665e-06,
637
+ "loss": 0.6049,
638
+ "mean_token_accuracy": 0.8412599414587021,
639
+ "num_tokens": 1662890.0,
640
+ "step": 1400
641
+ }
642
+ ],
643
+ "logging_steps": 20,
644
+ "max_steps": 1500,
645
+ "num_input_tokens_seen": 0,
646
+ "num_train_epochs": 2,
647
+ "save_steps": 100,
648
+ "stateful_callbacks": {
649
+ "TrainerControl": {
650
+ "args": {
651
+ "should_epoch_stop": false,
652
+ "should_evaluate": false,
653
+ "should_log": false,
654
+ "should_save": true,
655
+ "should_training_stop": false
656
+ },
657
+ "attributes": {}
658
+ }
659
+ },
660
+ "total_flos": 7.09795566342144e+16,
661
+ "train_batch_size": 1,
662
+ "trial_name": null,
663
+ "trial_params": null
664
+ }
version ADDED
@@ -0,0 +1 @@
 
 
1
+ 3