import os import json from argparse import ArgumentParser from glob import glob from tqdm import tqdm import torch from safetensors.torch import load_file, save_file from huggingface_hub import snapshot_download def weight_quant(tensor: torch.Tensor): assert tensor.dim() == 2 qmax = 127.0 abs_max = torch.abs(tensor).max(dim=1, keepdim=True)[0] # [rows, 1] scale = abs_max / qmax # [rows, 1] assert scale.shape == (tensor.shape[0], 1) quantized = torch.round(tensor / scale) quantized = torch.clamp(quantized, -qmax, qmax) return quantized.to(torch.int8), scale.to(torch.float32) def main(bf16_path, int8_path, model_name="deepseek-ai/DeepSeek-R1"): torch.set_default_dtype(torch.bfloat16) os.makedirs(int8_path, exist_ok=True) model_index_file = os.path.join(int8_path, "model.safetensors.index.json") config_file = os.path.join(int8_path, "config.json") if not os.path.exists(model_index_file) or not os.path.exists(config_file): snapshot_download( repo_id=model_name, ignore_patterns=["*.safetensors"], local_dir=int8_path, local_dir_use_symlinks=False ) print(f"model index file and config file downloaded to {int8_path}") # modify config.json and save it config = json.load(open(config_file)) # delete quantization_config config.pop("quantization_config", None) with open(config_file, "w", encoding="utf-8") as f: json.dump(config, f, indent=2, ensure_ascii=False, sort_keys=True) print(f"config.json modified and saved to {config_file}") with open(model_index_file, "r") as f: model_index = json.load(f) weight_map = model_index["weight_map"] scale_count = len([key for key in weight_map.keys() if key.endswith("_scale_inv")]) safetensor_files = list(glob(os.path.join(bf16_path, "*.safetensors"))) safetensor_files.sort() quant_count = 0 new_weight_map = {} for safetensor_file in tqdm(safetensor_files): file_name = os.path.basename(safetensor_file) state_dict = load_file(safetensor_file, device="cuda") new_state_dict = {} for weight_name, weight in state_dict.items(): scale_inv_name = f"{weight_name}_scale_inv" if scale_inv_name in weight_map: assert weight.element_size() == 2 quant_count += 1 int8_weight, scale_inv = weight_quant(weight) new_state_dict[weight_name] = int8_weight new_scale_name = scale_inv_name.replace("_scale_inv", "_scale") new_state_dict[new_scale_name] = scale_inv new_weight_map[weight_name] = file_name new_weight_map[new_scale_name] = file_name else: new_state_dict[weight_name] = weight new_weight_map[weight_name] = file_name new_safetensor_file = os.path.join(int8_path, file_name) save_file(new_state_dict, new_safetensor_file) assert quant_count == scale_count print(f"{quant_count} weights are quantized.") # modify model.safetensors.index.json with open(model_index_file, "r") as f: model_index = json.load(f) model_index["weight_map"] = new_weight_map with open(model_index_file, "w", encoding="utf-8") as f: json.dump(model_index, f, indent=2, ensure_ascii=False, sort_keys=True) print(f"model.safetensors.index.json modified and saved to {model_index_file}") if __name__ == "__main__": parser = ArgumentParser() parser.add_argument("--input-bf16-hf-path", type=str, required=True) parser.add_argument("--output-int8-hf-path", type=str, required=True) parser.add_argument("--model-name", type=str, default="deepseek-ai/DeepSeek-R1") args = parser.parse_args() main(args.input_bf16_hf_path, args.output_int8_hf_path, args.model_name) print("done")