|
import os |
|
import json |
|
from argparse import ArgumentParser |
|
from glob import glob |
|
from tqdm import tqdm |
|
|
|
import torch |
|
from safetensors.torch import load_file, save_file |
|
from huggingface_hub import snapshot_download |
|
|
|
def weight_quant(tensor: torch.Tensor): |
|
assert tensor.dim() == 2 |
|
qmax = 127.0 |
|
abs_max = torch.abs(tensor).max(dim=1, keepdim=True)[0] |
|
scale = abs_max / qmax |
|
assert scale.shape == (tensor.shape[0], 1) |
|
quantized = torch.round(tensor / scale) |
|
quantized = torch.clamp(quantized, -qmax, qmax) |
|
return quantized.to(torch.int8), scale.to(torch.float32) |
|
|
|
def main(bf16_path, int8_path, model_name="deepseek-ai/DeepSeek-R1"): |
|
torch.set_default_dtype(torch.bfloat16) |
|
os.makedirs(int8_path, exist_ok=True) |
|
model_index_file = os.path.join(int8_path, "model.safetensors.index.json") |
|
config_file = os.path.join(int8_path, "config.json") |
|
|
|
if not os.path.exists(model_index_file) or not os.path.exists(config_file): |
|
snapshot_download( |
|
repo_id=model_name, |
|
ignore_patterns=["*.safetensors"], |
|
local_dir=int8_path, |
|
local_dir_use_symlinks=False |
|
) |
|
print(f"model index file and config file downloaded to {int8_path}") |
|
|
|
|
|
config = json.load(open(config_file)) |
|
|
|
config.pop("quantization_config", None) |
|
with open(config_file, "w", encoding="utf-8") as f: |
|
json.dump(config, f, indent=2, ensure_ascii=False, sort_keys=True) |
|
print(f"config.json modified and saved to {config_file}") |
|
|
|
with open(model_index_file, "r") as f: |
|
model_index = json.load(f) |
|
weight_map = model_index["weight_map"] |
|
scale_count = len([key for key in weight_map.keys() if key.endswith("_scale_inv")]) |
|
|
|
safetensor_files = list(glob(os.path.join(bf16_path, "*.safetensors"))) |
|
safetensor_files.sort() |
|
quant_count = 0 |
|
new_weight_map = {} |
|
for safetensor_file in tqdm(safetensor_files): |
|
file_name = os.path.basename(safetensor_file) |
|
state_dict = load_file(safetensor_file, device="cuda") |
|
new_state_dict = {} |
|
for weight_name, weight in state_dict.items(): |
|
scale_inv_name = f"{weight_name}_scale_inv" |
|
if scale_inv_name in weight_map: |
|
assert weight.element_size() == 2 |
|
quant_count += 1 |
|
int8_weight, scale_inv = weight_quant(weight) |
|
new_state_dict[weight_name] = int8_weight |
|
new_scale_name = scale_inv_name.replace("_scale_inv", "_scale") |
|
new_state_dict[new_scale_name] = scale_inv |
|
|
|
new_weight_map[weight_name] = file_name |
|
new_weight_map[new_scale_name] = file_name |
|
else: |
|
new_state_dict[weight_name] = weight |
|
new_weight_map[weight_name] = file_name |
|
new_safetensor_file = os.path.join(int8_path, file_name) |
|
save_file(new_state_dict, new_safetensor_file) |
|
assert quant_count == scale_count |
|
print(f"{quant_count} weights are quantized.") |
|
|
|
|
|
with open(model_index_file, "r") as f: |
|
model_index = json.load(f) |
|
model_index["weight_map"] = new_weight_map |
|
with open(model_index_file, "w", encoding="utf-8") as f: |
|
json.dump(model_index, f, indent=2, ensure_ascii=False, sort_keys=True) |
|
print(f"model.safetensors.index.json modified and saved to {model_index_file}") |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = ArgumentParser() |
|
parser.add_argument("--input-bf16-hf-path", type=str, required=True) |
|
parser.add_argument("--output-int8-hf-path", type=str, required=True) |
|
parser.add_argument("--model-name", type=str, default="deepseek-ai/DeepSeek-R1") |
|
|
|
args = parser.parse_args() |
|
main(args.input_bf16_hf_path, args.output_int8_hf_path, args.model_name) |
|
print("done") |
|
|