File size: 5,542 Bytes
e6aaeeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
from typing import Tuple

import torch
import triton
import triton.language as tl
from triton import Config

@triton.jit
def act_quant_kernel(x_ptr, y_ptr, s_ptr, BLOCK_SIZE: tl.constexpr):
    pid = tl.program_id(axis=0)
    offs = pid * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
    x = tl.load(x_ptr + offs).to(tl.float32)
    s = tl.max(tl.abs(x)) / 448.
    y = x / s
    y = y.to(y_ptr.dtype.element_ty)
    tl.store(y_ptr + offs, y)
    tl.store(s_ptr + pid, s)


def act_quant(x: torch.Tensor, block_size: int = 128) -> Tuple[torch.Tensor, torch.Tensor]:
    assert x.is_contiguous()
    assert x.size(-1) % block_size == 0
    y = torch.empty_like(x, dtype=torch.float8_e4m3fn)
    s = x.new_empty(*x.size()[:-1], x.size(-1) // block_size, dtype=torch.float32)
    grid = lambda meta: (triton.cdiv(x.numel(), meta['BLOCK_SIZE']), )
    act_quant_kernel[grid](x, y, s, BLOCK_SIZE=block_size)
    return y, s


@triton.jit
def weight_dequant_kernel(x_ptr, s_ptr, y_ptr, M, N, BLOCK_SIZE: tl.constexpr):
    pid_m = tl.program_id(axis=0)
    pid_n = tl.program_id(axis=1)
    n = tl.cdiv(N, BLOCK_SIZE)
    offs_m = pid_m * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
    offs_n = pid_n * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
    offs = offs_m[:, None] * N + offs_n[None, :]
    mask = (offs_m[:, None] < M) & (offs_n[None, :] < N)
    x = tl.load(x_ptr + offs, mask=mask).to(tl.float32)
    s = tl.load(s_ptr + pid_m * n + pid_n)
    y = x * s
    tl.store(y_ptr + offs, y, mask=mask)


def weight_dequant(x: torch.Tensor, s: torch.Tensor, block_size: int = 128) -> torch.Tensor:
    assert x.is_contiguous() and s.is_contiguous()
    assert x.dim() == 2 and s.dim() == 2
    M, N = x.size()
    y = torch.empty_like(x, dtype=torch.get_default_dtype())
    grid = lambda meta: (triton.cdiv(M, meta['BLOCK_SIZE']), triton.cdiv(N, meta['BLOCK_SIZE']))
    weight_dequant_kernel[grid](x, s, y, M, N, BLOCK_SIZE=block_size)
    return y


@triton.jit
def weight_quant_kernel(x_ptr, y_ptr, s_ptr, M, N, BLOCK_SIZE: tl.constexpr):
    pid_m = tl.program_id(axis=0)
    pid_n = tl.program_id(axis=1)
    n = tl.cdiv(N, BLOCK_SIZE)
    offs_m = pid_m * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
    offs_n = pid_n * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
    offs = offs_m[:, None] * N + offs_n[None, :]
    mask = (offs_m[:, None] < M) & (offs_n[None, :] < N)
    x = tl.load(x_ptr + offs, mask=mask).to(tl.float32)
    s = tl.max(tl.abs(x)) / 127.#int8
    y = x / s
    y = y.to(y_ptr.dtype.element_ty)
    tl.store(y_ptr + offs, y, mask=mask)
    tl.store(s_ptr + pid_m * n + pid_n, s)

# quant to block int8
def weight_quant(x: torch.Tensor, block_size: int = 128) -> Tuple[torch.Tensor, torch.Tensor]:
    assert x.is_contiguous()
    assert x.dim() == 2
    M, N = x.size()
    y = torch.empty_like(x, dtype=torch.int8)
    sM, sN = torch.tensor(1.0*M/block_size).ceil().int(), torch.tensor(1.0*N/block_size).ceil().int()
    s = x.new_empty(sM, sN, dtype=torch.float32)
    grid = lambda meta: (triton.cdiv(M, meta['BLOCK_SIZE']), triton.cdiv(N, meta['BLOCK_SIZE']))
    weight_quant_kernel[grid](x, y, s, M, N, BLOCK_SIZE=block_size)
    return y, s


fp8_gemm_configs = [
    Config({'BLOCK_SIZE_M': block_m, 'BLOCK_SIZE_N': block_n, 'BLOCK_SIZE_K': 128}, num_stages=num_stages, num_warps=8)
    for block_m in [16, 32, 64] for block_n in [32, 64, 128] for num_stages in [3, 4, 5, 6]
]

@triton.autotune(configs=fp8_gemm_configs, key=['N', 'K'])
@triton.jit
def fp8_gemm_kernel(a_ptr, b_ptr, c_ptr,
                    a_s_ptr, b_s_ptr,
                    M, N: tl.constexpr, K: tl.constexpr,
                    BLOCK_SIZE_M: tl.constexpr,
                    BLOCK_SIZE_N: tl.constexpr,
                    BLOCK_SIZE_K: tl.constexpr):
    pid_m = tl.program_id(axis=0)
    pid_n = tl.program_id(axis=1)
    k = tl.cdiv(K, BLOCK_SIZE_K)
    offs_m = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M
    offs_n = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N
    offs_k = tl.arange(0, BLOCK_SIZE_K)
    a_ptrs = a_ptr + offs_m[:, None] * K + offs_k[None, :]
    b_ptrs = b_ptr + offs_n[None, :] * K + offs_k[:, None]
    a_s_ptrs = a_s_ptr + offs_m * k
    b_s_ptrs = b_s_ptr + (offs_n // BLOCK_SIZE_K) * k

    accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
    for i in range(k):
        a = tl.load(a_ptrs, mask=offs_k[None, :] < K - i * BLOCK_SIZE_K, other=0.0)
        b = tl.load(b_ptrs, mask=offs_k[:, None] < K - i * BLOCK_SIZE_K, other=0.0)
        a_s = tl.load(a_s_ptrs)
        b_s = tl.load(b_s_ptrs)
        accumulator += tl.dot(a, b) * a_s[:, None] * b_s[None, :]
        a_ptrs += BLOCK_SIZE_K
        b_ptrs += BLOCK_SIZE_K
        a_s_ptrs += 1
        b_s_ptrs += 1
    c = accumulator.to(c_ptr.dtype.element_ty)
    offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
    offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
    c_ptrs = c_ptr + offs_m[:, None] * N + offs_n[None, :]
    mask = (offs_m[:, None] < M) & (offs_n[None, :] < N)
    tl.store(c_ptrs, c, mask=mask)


def fp8_gemm(a: torch.Tensor, a_s: torch.Tensor, b: torch.Tensor, b_s: torch.Tensor):
    assert a.is_contiguous() and b.is_contiguous()
    assert a_s.is_contiguous() and b_s.is_contiguous()
    K = a.size(-1)
    M = a.numel() // K
    N = b.size(0)
    c = a.new_empty(*a.size()[:-1], N, dtype=torch.get_default_dtype())
    grid = lambda META: (triton.cdiv(M, META['BLOCK_SIZE_M']), triton.cdiv(N, META['BLOCK_SIZE_N']))
    fp8_gemm_kernel[grid](a, b, c, a_s, b_s, M, N, K)
    return c