init meta files
Browse files- LICENSE +21 -0
- config.json +37 -0
- configuration_longcat_flash.py +216 -0
- generation_config.json +7 -0
- modeling_longcat_flash.py +644 -0
- special_tokens_map.json +30 -0
- tokenizer.json +0 -0
- tokenizer_config.json +42 -0
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2025 Meituan
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
config.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"LongcatFlashForCausalLM"
|
4 |
+
],
|
5 |
+
"attention_bias": false,
|
6 |
+
"attention_dropout": 0.0,
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "configuration_longcat_flash.LongcatFlashConfig",
|
9 |
+
"AutoModel": "modeling_longcat_flash.LongcatFlashModel",
|
10 |
+
"AutoModelForCausalLM": "modeling_longcat_flash.LongcatFlashForCausalLM"
|
11 |
+
},
|
12 |
+
"vocab_size": 131072,
|
13 |
+
"hidden_size": 6144,
|
14 |
+
"ffn_hidden_size": 12288,
|
15 |
+
"expert_ffn_hidden_size": 2048,
|
16 |
+
"num_layers": 28,
|
17 |
+
"num_attention_heads": 64,
|
18 |
+
"kv_lora_rank": 512,
|
19 |
+
"q_lora_rank": 1536,
|
20 |
+
"qk_rope_head_dim": 64,
|
21 |
+
"v_head_dim": 128,
|
22 |
+
"qk_nope_head_dim": 128,
|
23 |
+
"mla_scale_q_lora": true,
|
24 |
+
"mla_scale_kv_lora": true,
|
25 |
+
"routed_scaling_factor": 6.0,
|
26 |
+
"n_routed_experts": 512,
|
27 |
+
"max_position_embeddings": 131072,
|
28 |
+
"rms_norm_eps": 1e-5,
|
29 |
+
"use_cache": true,
|
30 |
+
"bos_token_id": 1,
|
31 |
+
"eos_token_id": 2,
|
32 |
+
"rope_theta": 10000000.0,
|
33 |
+
"attention_method": "MLA",
|
34 |
+
"zero_expert_num": 256,
|
35 |
+
"zero_expert_type": "identity",
|
36 |
+
"moe_topk": 12
|
37 |
+
}
|
configuration_longcat_flash.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
"""LongcatFlash model configuration"""
|
3 |
+
|
4 |
+
from transformers.configuration_utils import PretrainedConfig
|
5 |
+
from transformers.modeling_rope_utils import rope_config_validation
|
6 |
+
|
7 |
+
|
8 |
+
LONGCAT_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
9 |
+
|
10 |
+
|
11 |
+
class LongcatFlashConfig(PretrainedConfig):
|
12 |
+
r"""
|
13 |
+
This is the configuration class to store the configuration of a [`LongcatFlashModel`]. It is used to instantiate an LongcatFlash
|
14 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
15 |
+
defaults will yield a similar configuration to that of the LongcatFlash.
|
16 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
17 |
+
documentation from [`PretrainedConfig`] for more information.
|
18 |
+
|
19 |
+
|
20 |
+
Args:
|
21 |
+
vocab_size (`int`, *optional*, defaults to 131072):
|
22 |
+
Vocabulary size of the Deep model. Defines the number of different tokens that can be represented by the
|
23 |
+
`inputs_ids` passed when calling [`LongcatFlashModel`]
|
24 |
+
hidden_size (`int`, *optional*, defaults to 7168):
|
25 |
+
Dimension of the hidden representations.
|
26 |
+
ffn_hidden_size (`int`, *optional*, defaults to 18432):
|
27 |
+
Dimension of the MLP representations.
|
28 |
+
expert_ffn_hidden_size (`int`, *optional*, defaults to 2048):
|
29 |
+
Dimension of the MoE representations.
|
30 |
+
num_layers (`int`, *optional*, defaults to 61):
|
31 |
+
Number of hidden layers in the Transformer decoder.
|
32 |
+
num_attention_heads (`int`, *optional*, defaults to 128):
|
33 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
34 |
+
num_key_value_heads (`int`, *optional*, defaults to 128):
|
35 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
36 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
37 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
38 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
39 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
40 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
41 |
+
`num_attention_heads`.
|
42 |
+
n_routed_experts (`int`, *optional*, defaults to 256):
|
43 |
+
Number of routed experts.
|
44 |
+
routed_scaling_factor (`float`, *optional*, defaults to 2.5):
|
45 |
+
Scaling factor or routed experts.
|
46 |
+
kv_lora_rank (`int`, *optional*, defaults to 512):
|
47 |
+
Rank of the LoRA matrices for key and value projections.
|
48 |
+
q_lora_rank (`int`, *optional*, defaults to 1536):
|
49 |
+
Rank of the LoRA matrices for query projections.
|
50 |
+
qk_rope_head_dim (`int`, *optional*, defaults to 64):
|
51 |
+
Dimension of the query/key heads that use rotary position embeddings.
|
52 |
+
v_head_dim (`int`, *optional*, defaults to 128):
|
53 |
+
Dimension of the value heads.
|
54 |
+
qk_nope_head_dim (`int`, *optional*, defaults to 128):
|
55 |
+
Dimension of the query/key heads that don't use rotary position embeddings.
|
56 |
+
norm_topk_prob (`bool`, *optional*, defaults to `True`):
|
57 |
+
Whether to normalize the weights of the routed experts.
|
58 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
59 |
+
The non-linear activation function (function or string) in the decoder.
|
60 |
+
max_position_embeddings (`int`, *optional*, defaults to 4096):
|
61 |
+
The maximum sequence length that this model might ever be used with.
|
62 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
63 |
+
The epsilon used by the rms normalization layers.
|
64 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
65 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
66 |
+
relevant if `config.is_decoder=True`.
|
67 |
+
pad_token_id (`int`, *optional*):
|
68 |
+
Padding token id.
|
69 |
+
bos_token_id (`int`, *optional*, defaults to 0):
|
70 |
+
Beginning of stream token id.
|
71 |
+
eos_token_id (`int`, *optional*, defaults to 1):
|
72 |
+
End of stream token id.
|
73 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
74 |
+
Whether to tie weight embeddings
|
75 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
76 |
+
The base period of the RoPE embeddings.
|
77 |
+
attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
|
78 |
+
Whether to use a bias in the query, key, value and output projection layers during self-attention.
|
79 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
80 |
+
The dropout ratio for the attention probabilities.
|
81 |
+
attention_method (`str`, *optional*, defaults to `"MLA"`):
|
82 |
+
The attention method to use.
|
83 |
+
initializer_range (`float`, *optional*, defaults to 0.006):
|
84 |
+
The initializer range for the model.
|
85 |
+
router_bias (`bool`, *optional*, defaults to `False`):
|
86 |
+
Whether to use a bias in the router.
|
87 |
+
zero_expert_num (`int`, *optional*, defaults to `None`):
|
88 |
+
The number of zero experts to use.
|
89 |
+
zero_expert_type (`str`, *optional*, defaults to `None`):
|
90 |
+
The type of zero expert to use.
|
91 |
+
|
92 |
+
```python
|
93 |
+
>>> from transformers import LongcatFlashModel, LongcatFlashConfig
|
94 |
+
|
95 |
+
>>> # Initializing a LongcatFlash style configuration
|
96 |
+
>>> configuration = LongcatFlashConfig()
|
97 |
+
|
98 |
+
>>> # Accessing the model configuration
|
99 |
+
>>> configuration = model.config
|
100 |
+
```"""
|
101 |
+
|
102 |
+
model_type = "longcat_flash"
|
103 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
104 |
+
base_model_tp_plan = {
|
105 |
+
"layers.*.self_attn.k_proj": "colwise",
|
106 |
+
"layers.*.self_attn.v_proj": "colwise",
|
107 |
+
"layers.*.self_attn.o_proj": "rowwise",
|
108 |
+
"layers.*.mlp.experts.*.gate_proj": "local_colwise",
|
109 |
+
"layers.*.mlp.experts.*.up_proj": "local_colwise",
|
110 |
+
"layers.*.mlp.experts.*.down_proj": "local_rowwise",
|
111 |
+
"layers.*.mlps.*.gate_proj": "local_colwise",
|
112 |
+
"layers.*.mlps.*.up_proj": "local_colwise",
|
113 |
+
"layers.*.mlps.*.down_proj": "local_rowwise",
|
114 |
+
}
|
115 |
+
base_model_pp_plan = {
|
116 |
+
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
|
117 |
+
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
|
118 |
+
"norm": (["hidden_states"], ["hidden_states"]),
|
119 |
+
}
|
120 |
+
|
121 |
+
def __init__(
|
122 |
+
self,
|
123 |
+
vocab_size=131072,
|
124 |
+
hidden_size=7168,
|
125 |
+
ffn_hidden_size=18432,
|
126 |
+
expert_ffn_hidden_size=2048,
|
127 |
+
num_layers=61,
|
128 |
+
num_attention_heads=128,
|
129 |
+
num_key_value_heads=None,
|
130 |
+
n_routed_experts=256,
|
131 |
+
routed_scaling_factor=1,
|
132 |
+
kv_lora_rank=512,
|
133 |
+
q_lora_rank=1536,
|
134 |
+
qk_rope_head_dim=64,
|
135 |
+
v_head_dim=128,
|
136 |
+
qk_nope_head_dim=128,
|
137 |
+
mla_scale_q_lora=True,
|
138 |
+
mla_scale_kv_lora=True,
|
139 |
+
moe_topk=8,
|
140 |
+
norm_topk_prob=False,
|
141 |
+
hidden_act="silu",
|
142 |
+
max_position_embeddings=4096,
|
143 |
+
rms_norm_eps=1e-6,
|
144 |
+
use_cache=True,
|
145 |
+
pad_token_id=None,
|
146 |
+
bos_token_id=0,
|
147 |
+
eos_token_id=1,
|
148 |
+
tie_word_embeddings=False,
|
149 |
+
rope_theta=10000.0,
|
150 |
+
attention_bias=False,
|
151 |
+
attention_dropout=0.0,
|
152 |
+
attention_method='MLA',
|
153 |
+
initializer_range=0.006,
|
154 |
+
router_bias=False,
|
155 |
+
zero_expert_num=None,
|
156 |
+
zero_expert_type=None,
|
157 |
+
**kwargs,
|
158 |
+
):
|
159 |
+
self.vocab_size = vocab_size
|
160 |
+
self.max_position_embeddings = max_position_embeddings
|
161 |
+
self.hidden_size = hidden_size
|
162 |
+
self.ffn_hidden_size = ffn_hidden_size
|
163 |
+
self.expert_ffn_hidden_size = expert_ffn_hidden_size
|
164 |
+
self.num_layers = num_layers
|
165 |
+
self.num_attention_heads = num_attention_heads
|
166 |
+
self.n_routed_experts = n_routed_experts
|
167 |
+
self.routed_scaling_factor = routed_scaling_factor
|
168 |
+
self.kv_lora_rank = kv_lora_rank
|
169 |
+
self.q_lora_rank = q_lora_rank
|
170 |
+
self.qk_rope_head_dim = qk_rope_head_dim
|
171 |
+
self.v_head_dim = v_head_dim
|
172 |
+
self.qk_nope_head_dim = qk_nope_head_dim
|
173 |
+
self.qk_head_dim = qk_nope_head_dim + qk_rope_head_dim
|
174 |
+
self.moe_topk = moe_topk
|
175 |
+
self.norm_topk_prob = norm_topk_prob
|
176 |
+
self.mla_scale_q_lora = mla_scale_q_lora
|
177 |
+
self.mla_scale_kv_lora = mla_scale_kv_lora
|
178 |
+
self.attention_method = attention_method
|
179 |
+
self.initializer_range = initializer_range
|
180 |
+
self.router_bias = router_bias
|
181 |
+
self.zero_expert_num = zero_expert_num
|
182 |
+
self.zero_expert_type = zero_expert_type
|
183 |
+
|
184 |
+
if self.attention_method == "MLA":
|
185 |
+
self.head_dim = qk_rope_head_dim
|
186 |
+
else:
|
187 |
+
ValueError('attention_method should be one of ["MLA"]')
|
188 |
+
|
189 |
+
|
190 |
+
if num_key_value_heads is None:
|
191 |
+
num_key_value_heads = num_attention_heads
|
192 |
+
|
193 |
+
self.num_key_value_heads = num_key_value_heads
|
194 |
+
self.hidden_act = hidden_act
|
195 |
+
self.rms_norm_eps = rms_norm_eps
|
196 |
+
self.use_cache = use_cache
|
197 |
+
self.rope_theta = rope_theta
|
198 |
+
self.attention_bias = attention_bias
|
199 |
+
self.attention_dropout = attention_dropout
|
200 |
+
|
201 |
+
rope_config_validation(self)
|
202 |
+
|
203 |
+
super().__init__(
|
204 |
+
pad_token_id=pad_token_id,
|
205 |
+
bos_token_id=bos_token_id,
|
206 |
+
eos_token_id=eos_token_id,
|
207 |
+
tie_word_embeddings=tie_word_embeddings,
|
208 |
+
**kwargs,
|
209 |
+
)
|
210 |
+
|
211 |
+
@property
|
212 |
+
def num_hidden_layers(self):
|
213 |
+
return self.num_layers
|
214 |
+
|
215 |
+
|
216 |
+
__all__ = ["LongcatFlashConfig"]
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"pad_token_id": 3,
|
6 |
+
"transformers_version": "4.55.0"
|
7 |
+
}
|
modeling_longcat_flash.py
ADDED
@@ -0,0 +1,644 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Callable, Optional, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from torch import nn
|
6 |
+
|
7 |
+
from transformers.activations import ACT2FN
|
8 |
+
from transformers.cache_utils import Cache, DynamicCache
|
9 |
+
from transformers.generation import GenerationMixin
|
10 |
+
from transformers.integrations import use_kernel_forward_from_hub
|
11 |
+
from transformers.masking_utils import create_causal_mask
|
12 |
+
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
|
13 |
+
from transformers.modeling_layers import GradientCheckpointingLayer
|
14 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
15 |
+
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
|
16 |
+
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
17 |
+
from transformers.processing_utils import Unpack
|
18 |
+
from transformers.utils import TransformersKwargs, auto_docstring, can_return_tuple
|
19 |
+
from transformers.utils.generic import check_model_inputs
|
20 |
+
from .configuration_longcat_flash import LongcatFlashConfig
|
21 |
+
|
22 |
+
|
23 |
+
@use_kernel_forward_from_hub("RMSNorm")
|
24 |
+
class LongcatFlashRMSNorm(nn.Module):
|
25 |
+
def __init__(self, hidden_size, eps=1e-6):
|
26 |
+
"""
|
27 |
+
LongcatFlashRMSNorm is equivalent to T5LayerNorm
|
28 |
+
"""
|
29 |
+
super().__init__()
|
30 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
31 |
+
self.variance_epsilon = eps
|
32 |
+
|
33 |
+
def forward(self, hidden_states):
|
34 |
+
input_dtype = hidden_states.dtype
|
35 |
+
hidden_states = hidden_states.to(torch.float32)
|
36 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
37 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
38 |
+
return self.weight * hidden_states.to(input_dtype)
|
39 |
+
|
40 |
+
def extra_repr(self):
|
41 |
+
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
42 |
+
|
43 |
+
|
44 |
+
class LongcatFlashRotaryEmbedding(nn.Module):
|
45 |
+
def __init__(self, config: LongcatFlashConfig, device=None):
|
46 |
+
super().__init__()
|
47 |
+
# BC: "rope_type" was originally "type"
|
48 |
+
if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict):
|
49 |
+
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
50 |
+
else:
|
51 |
+
self.rope_type = "default"
|
52 |
+
self.max_seq_len_cached = config.max_position_embeddings
|
53 |
+
self.original_max_seq_len = config.max_position_embeddings
|
54 |
+
|
55 |
+
self.config = config
|
56 |
+
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
57 |
+
|
58 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
|
59 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
60 |
+
self.original_inv_freq = self.inv_freq
|
61 |
+
|
62 |
+
@torch.no_grad()
|
63 |
+
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
|
64 |
+
def forward(self, x, position_ids):
|
65 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
|
66 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
67 |
+
|
68 |
+
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
|
69 |
+
with torch.autocast(device_type=device_type, enabled=False): # Force float32
|
70 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
71 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
72 |
+
cos = emb.cos() * self.attention_scaling
|
73 |
+
sin = emb.sin() * self.attention_scaling
|
74 |
+
|
75 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
76 |
+
|
77 |
+
|
78 |
+
class LongcatFlashMLP(nn.Module):
|
79 |
+
def __init__(self, config, hidden_size=None, intermediate_size=None):
|
80 |
+
super().__init__()
|
81 |
+
self.config = config
|
82 |
+
self.hidden_size = config.hidden_size if hidden_size is None else hidden_size
|
83 |
+
self.intermediate_size = config.ffn_hidden_size if intermediate_size is None else intermediate_size
|
84 |
+
|
85 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
86 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
87 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
88 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
89 |
+
|
90 |
+
def forward(self, x):
|
91 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
92 |
+
return down_proj
|
93 |
+
|
94 |
+
|
95 |
+
class LongcatFlashTopkRouter(nn.Module):
|
96 |
+
def __init__(self, config):
|
97 |
+
super().__init__()
|
98 |
+
self.config = config
|
99 |
+
self.top_k = config.moe_topk
|
100 |
+
self.n_routed_experts = (
|
101 |
+
config.n_routed_experts
|
102 |
+
if config.zero_expert_num is None
|
103 |
+
else config.n_routed_experts + config.zero_expert_num
|
104 |
+
)
|
105 |
+
self.routed_scaling_factor = config.routed_scaling_factor
|
106 |
+
self.norm_topk_prob = config.norm_topk_prob
|
107 |
+
self.router_bias = config.router_bias
|
108 |
+
|
109 |
+
self.classifier = nn.Linear(config.hidden_size, self.n_routed_experts, bias=self.router_bias)
|
110 |
+
self.register_buffer("e_score_correction_bias", torch.zeros((self.n_routed_experts)))
|
111 |
+
|
112 |
+
@torch.no_grad()
|
113 |
+
def get_topk_indices(self, scores):
|
114 |
+
scores_for_choice = scores.view(-1, self.n_routed_experts) + self.e_score_correction_bias.unsqueeze(0)
|
115 |
+
topk_indices = torch.topk(scores_for_choice, k=self.top_k, dim=-1, sorted=False)[1]
|
116 |
+
return topk_indices
|
117 |
+
|
118 |
+
def forward(self, hidden_states):
|
119 |
+
hidden_states = hidden_states.view(-1, self.config.hidden_size)
|
120 |
+
router_logits = F.linear(hidden_states.type(torch.float32), self.classifier.weight.type(torch.float32))
|
121 |
+
scores = router_logits.softmax(dim=-1)
|
122 |
+
topk_indices = self.get_topk_indices(scores)
|
123 |
+
topk_weights = scores.gather(1, topk_indices)
|
124 |
+
if self.norm_topk_prob:
|
125 |
+
denominator = topk_weights.sum(dim=-1, keepdim=True) + 1e-20
|
126 |
+
topk_weights /= denominator
|
127 |
+
topk_weights = topk_weights * self.routed_scaling_factor
|
128 |
+
return topk_indices, topk_weights
|
129 |
+
|
130 |
+
|
131 |
+
class LongcatFlashMoE(nn.Module):
|
132 |
+
"""
|
133 |
+
moe module.
|
134 |
+
"""
|
135 |
+
|
136 |
+
def __init__(self, config):
|
137 |
+
super().__init__()
|
138 |
+
self.config = config
|
139 |
+
self.experts = nn.ModuleList(
|
140 |
+
[
|
141 |
+
LongcatFlashMLP(config, intermediate_size=config.expert_ffn_hidden_size)
|
142 |
+
for _ in range(config.n_routed_experts)
|
143 |
+
]
|
144 |
+
)
|
145 |
+
self.router = LongcatFlashTopkRouter(config)
|
146 |
+
self.zero_expert_num = config.zero_expert_num
|
147 |
+
self.zero_expert_type = config.zero_expert_type
|
148 |
+
|
149 |
+
def moe(self, hidden_states: torch.Tensor, topk_indices: torch.Tensor, topk_weights: torch.Tensor):
|
150 |
+
final_hidden_states = torch.zeros_like(hidden_states, dtype=topk_weights.dtype)
|
151 |
+
total_experts = len(self.experts) if self.zero_expert_num is None else len(self.experts) + self.zero_expert_num
|
152 |
+
|
153 |
+
expert_mask = torch.nn.functional.one_hot(topk_indices, num_classes=total_experts)
|
154 |
+
expert_mask = expert_mask.permute(2, 0, 1)
|
155 |
+
|
156 |
+
for expert_idx in range(total_experts):
|
157 |
+
expert = self.experts[expert_idx] if expert_idx < len(self.experts) else None
|
158 |
+
mask = expert_mask[expert_idx]
|
159 |
+
token_indices, weight_indices = torch.where(mask)
|
160 |
+
|
161 |
+
if token_indices.numel() > 0:
|
162 |
+
expert_weights = topk_weights[token_indices, weight_indices]
|
163 |
+
expert_input = hidden_states[token_indices]
|
164 |
+
|
165 |
+
if self.zero_expert_num is None or expert_idx < len(self.experts):
|
166 |
+
expert_output = expert(expert_input)
|
167 |
+
elif self.zero_expert_type == "identity":
|
168 |
+
expert_output = expert_input
|
169 |
+
else:
|
170 |
+
raise ValueError("Unknown condition")
|
171 |
+
|
172 |
+
weighted_output = expert_output * expert_weights.unsqueeze(-1)
|
173 |
+
final_hidden_states.index_add_(0, token_indices, weighted_output)
|
174 |
+
|
175 |
+
return final_hidden_states.type(hidden_states.dtype)
|
176 |
+
|
177 |
+
def forward(self, hidden_states):
|
178 |
+
orig_shape = hidden_states.shape
|
179 |
+
topk_indices, topk_weights = self.router(hidden_states)
|
180 |
+
hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
|
181 |
+
hidden_states = self.moe(hidden_states, topk_indices, topk_weights).view(*orig_shape)
|
182 |
+
return hidden_states
|
183 |
+
|
184 |
+
|
185 |
+
def rotate_half(x):
|
186 |
+
"""Rotates half the hidden dims of the input."""
|
187 |
+
x1 = x[..., : x.shape[-1] // 2]
|
188 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
189 |
+
return torch.cat((-x2, x1), dim=-1)
|
190 |
+
|
191 |
+
|
192 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
193 |
+
"""
|
194 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
195 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
196 |
+
"""
|
197 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
198 |
+
if n_rep == 1:
|
199 |
+
return hidden_states
|
200 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
201 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
202 |
+
|
203 |
+
|
204 |
+
def eager_attention_forward(
|
205 |
+
module: nn.Module,
|
206 |
+
query: torch.Tensor,
|
207 |
+
key: torch.Tensor,
|
208 |
+
value: torch.Tensor,
|
209 |
+
attention_mask: Optional[torch.Tensor],
|
210 |
+
scaling: float,
|
211 |
+
dropout: float = 0.0,
|
212 |
+
**kwargs: Unpack[TransformersKwargs],
|
213 |
+
):
|
214 |
+
key_states = repeat_kv(key, module.num_key_value_groups)
|
215 |
+
value_states = repeat_kv(value, module.num_key_value_groups)
|
216 |
+
|
217 |
+
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
|
218 |
+
if attention_mask is not None:
|
219 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
220 |
+
attn_weights = attn_weights + causal_mask
|
221 |
+
|
222 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
|
223 |
+
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
|
224 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
225 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
226 |
+
|
227 |
+
return attn_output, attn_weights
|
228 |
+
|
229 |
+
|
230 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1, use_mla=False):
|
231 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
232 |
+
|
233 |
+
Args:
|
234 |
+
q (`torch.Tensor`): The query tensor.
|
235 |
+
k (`torch.Tensor`): The key tensor.
|
236 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
237 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
238 |
+
position_ids (`torch.Tensor`, *optional*):
|
239 |
+
Deprecated and unused.
|
240 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
241 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
242 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
243 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
244 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
245 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
246 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
247 |
+
Returns:
|
248 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
249 |
+
"""
|
250 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
251 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
252 |
+
|
253 |
+
if use_mla:
|
254 |
+
b, h, s, d = q.shape
|
255 |
+
q = q.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
|
256 |
+
|
257 |
+
b, h, s, d = k.shape
|
258 |
+
k = k.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
|
259 |
+
|
260 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
261 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
262 |
+
return q_embed, k_embed
|
263 |
+
|
264 |
+
|
265 |
+
class LongcatFlashMLA(nn.Module):
|
266 |
+
"""Modified from Deepseek MLA"""
|
267 |
+
|
268 |
+
def __init__(self, config: LongcatFlashConfig, layer_idx: int):
|
269 |
+
super().__init__()
|
270 |
+
self.config = config
|
271 |
+
self.layer_idx = layer_idx
|
272 |
+
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
|
273 |
+
self.attention_dropout = config.attention_dropout
|
274 |
+
self.num_heads = config.num_attention_heads
|
275 |
+
self.rope_theta = config.rope_theta
|
276 |
+
self.q_lora_rank = config.q_lora_rank
|
277 |
+
self.qk_rope_head_dim = config.qk_rope_head_dim
|
278 |
+
self.kv_lora_rank = config.kv_lora_rank
|
279 |
+
self.v_head_dim = config.v_head_dim
|
280 |
+
self.qk_nope_head_dim = config.qk_nope_head_dim
|
281 |
+
self.qk_head_dim = config.qk_head_dim
|
282 |
+
|
283 |
+
self.is_causal = True
|
284 |
+
if self.q_lora_rank is None:
|
285 |
+
self.q_proj = nn.Linear(config.hidden_size, self.num_heads * self.qk_head_dim, bias=False)
|
286 |
+
else:
|
287 |
+
self.q_a_proj = nn.Linear(config.hidden_size, config.q_lora_rank, bias=config.attention_bias)
|
288 |
+
self.q_a_layernorm = LongcatFlashRMSNorm(config.q_lora_rank)
|
289 |
+
self.q_b_proj = nn.Linear(config.q_lora_rank, self.num_heads * self.qk_head_dim, bias=False)
|
290 |
+
|
291 |
+
self.kv_a_proj_with_mqa = nn.Linear(
|
292 |
+
config.hidden_size,
|
293 |
+
self.kv_lora_rank + self.qk_rope_head_dim,
|
294 |
+
bias=config.attention_bias,
|
295 |
+
)
|
296 |
+
self.kv_a_layernorm = LongcatFlashRMSNorm(self.kv_lora_rank)
|
297 |
+
self.kv_b_proj = nn.Linear(
|
298 |
+
self.kv_lora_rank,
|
299 |
+
self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
|
300 |
+
bias=False,
|
301 |
+
)
|
302 |
+
|
303 |
+
self.o_proj = nn.Linear(
|
304 |
+
self.num_heads * self.v_head_dim,
|
305 |
+
config.hidden_size,
|
306 |
+
bias=config.attention_bias,
|
307 |
+
)
|
308 |
+
|
309 |
+
if config.mla_scale_q_lora:
|
310 |
+
self.mla_scale_q_lora = (config.hidden_size / self.q_lora_rank) ** 0.5
|
311 |
+
if config.mla_scale_kv_lora:
|
312 |
+
self.mla_scale_kv_lora = (config.hidden_size / self.kv_lora_rank) ** 0.5
|
313 |
+
self.scaling = self.qk_head_dim ** (-0.5)
|
314 |
+
|
315 |
+
def forward(
|
316 |
+
self,
|
317 |
+
hidden_states: torch.Tensor,
|
318 |
+
position_embeddings: tuple[torch.Tensor, torch.Tensor],
|
319 |
+
attention_mask: Optional[torch.Tensor],
|
320 |
+
past_key_value: Optional[Cache] = None,
|
321 |
+
cache_position: Optional[torch.LongTensor] = None,
|
322 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
323 |
+
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
|
324 |
+
batch_size, seq_length = hidden_states.shape[:-1]
|
325 |
+
query_shape = (batch_size, seq_length, -1, self.qk_head_dim)
|
326 |
+
key_shape = (batch_size, seq_length, -1, self.qk_nope_head_dim + self.v_head_dim)
|
327 |
+
|
328 |
+
q_states = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states))).view(query_shape).transpose(1, 2)
|
329 |
+
q_pass, q_rot = torch.split(q_states, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
|
330 |
+
|
331 |
+
# apply q_lora scaling
|
332 |
+
if self.mla_scale_q_lora is not None:
|
333 |
+
q_pass = q_pass * self.mla_scale_q_lora
|
334 |
+
q_rot = q_rot * self.mla_scale_q_lora
|
335 |
+
|
336 |
+
compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
|
337 |
+
k_pass, k_rot = torch.split(compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
|
338 |
+
k_pass = self.kv_a_layernorm(k_pass)
|
339 |
+
|
340 |
+
# apply kv_lora scaling
|
341 |
+
if self.mla_scale_kv_lora is not None:
|
342 |
+
k_pass = k_pass * self.mla_scale_kv_lora
|
343 |
+
|
344 |
+
k_pass = self.kv_b_proj(k_pass).view(key_shape).transpose(1, 2)
|
345 |
+
k_pass, value_states = torch.split(k_pass, [self.qk_nope_head_dim, self.v_head_dim], dim=-1)
|
346 |
+
|
347 |
+
k_rot = k_rot.view(batch_size, 1, seq_length, self.qk_rope_head_dim)
|
348 |
+
|
349 |
+
cos, sin = position_embeddings
|
350 |
+
q_rot, k_rot = apply_rotary_pos_emb(q_rot, k_rot, cos, sin, use_mla=True)
|
351 |
+
k_rot = k_rot.expand(*k_pass.shape[:-1], -1)
|
352 |
+
|
353 |
+
query_states = torch.cat((q_pass, q_rot), dim=-1)
|
354 |
+
key_states = torch.cat((k_pass, k_rot), dim=-1)
|
355 |
+
|
356 |
+
if past_key_value is not None:
|
357 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
358 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
359 |
+
|
360 |
+
if self.config._attn_implementation == "flash_attention_2" and self.qk_head_dim != self.v_head_dim:
|
361 |
+
value_states = F.pad(value_states, [0, self.qk_head_dim - self.v_head_dim])
|
362 |
+
|
363 |
+
attention_interface: Callable = eager_attention_forward
|
364 |
+
if self.config._attn_implementation != "eager":
|
365 |
+
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
366 |
+
|
367 |
+
attn_output, attn_weights = attention_interface(
|
368 |
+
self,
|
369 |
+
query_states,
|
370 |
+
key_states,
|
371 |
+
value_states,
|
372 |
+
attention_mask,
|
373 |
+
dropout=0.0 if not self.training else self.attention_dropout,
|
374 |
+
scaling=self.scaling,
|
375 |
+
**kwargs,
|
376 |
+
)
|
377 |
+
|
378 |
+
if self.config._attn_implementation == "flash_attention_2" and self.qk_head_dim != self.v_head_dim:
|
379 |
+
attn_output = attn_output[:, :, :, : self.v_head_dim]
|
380 |
+
|
381 |
+
attn_output = attn_output.reshape(batch_size, seq_length, -1).contiguous()
|
382 |
+
attn_output = self.o_proj(attn_output)
|
383 |
+
return attn_output, attn_weights
|
384 |
+
|
385 |
+
|
386 |
+
def create_attention_block(class_name, *args, **kwargs):
|
387 |
+
attention_mapping = {"MLA": LongcatFlashMLA}
|
388 |
+
|
389 |
+
chosen_class = attention_mapping.get(class_name)
|
390 |
+
if not chosen_class:
|
391 |
+
raise ValueError(f"No class found for name: {class_name}")
|
392 |
+
|
393 |
+
return chosen_class(*args, **kwargs)
|
394 |
+
|
395 |
+
|
396 |
+
class LongcatFlashDecoderLayer(GradientCheckpointingLayer):
|
397 |
+
def __init__(self, config: LongcatFlashConfig, layer_idx: int):
|
398 |
+
super().__init__()
|
399 |
+
self.layer_idx = layer_idx
|
400 |
+
self.hidden_size = config.hidden_size
|
401 |
+
self.mlp = LongcatFlashMoE(config)
|
402 |
+
|
403 |
+
self_attn = []
|
404 |
+
mlps = []
|
405 |
+
input_layernorm = []
|
406 |
+
post_attention_layernorm = []
|
407 |
+
for i in range(2):
|
408 |
+
self_attn.append(
|
409 |
+
create_attention_block(config.attention_method, config=config, layer_idx=layer_idx * 2 + i)
|
410 |
+
)
|
411 |
+
mlps.append(LongcatFlashMLP(config))
|
412 |
+
input_layernorm.append(LongcatFlashRMSNorm(config.hidden_size, eps=config.rms_norm_eps))
|
413 |
+
post_attention_layernorm.append(LongcatFlashRMSNorm(config.hidden_size, eps=config.rms_norm_eps))
|
414 |
+
|
415 |
+
self.self_attn = nn.ModuleList(self_attn)
|
416 |
+
self.mlps = nn.ModuleList(mlps)
|
417 |
+
self.input_layernorm = nn.ModuleList(input_layernorm)
|
418 |
+
self.post_attention_layernorm = nn.ModuleList(post_attention_layernorm)
|
419 |
+
|
420 |
+
def forward(
|
421 |
+
self,
|
422 |
+
hidden_states: torch.Tensor,
|
423 |
+
attention_mask: Optional[torch.Tensor] = None,
|
424 |
+
position_ids: Optional[torch.LongTensor] = None,
|
425 |
+
past_key_value: Optional[Cache] = None,
|
426 |
+
use_cache: Optional[bool] = False,
|
427 |
+
cache_position: Optional[torch.LongTensor] = None,
|
428 |
+
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None,
|
429 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
430 |
+
) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
431 |
+
for i in range(2):
|
432 |
+
residual = hidden_states
|
433 |
+
|
434 |
+
hidden_states = self.input_layernorm[i](hidden_states)
|
435 |
+
|
436 |
+
hidden_states, _ = self.self_attn[i](
|
437 |
+
hidden_states=hidden_states,
|
438 |
+
attention_mask=attention_mask,
|
439 |
+
position_ids=position_ids,
|
440 |
+
past_key_value=past_key_value,
|
441 |
+
use_cache=use_cache,
|
442 |
+
cache_position=cache_position,
|
443 |
+
position_embeddings=position_embeddings,
|
444 |
+
**kwargs,
|
445 |
+
)
|
446 |
+
hidden_states = residual + hidden_states
|
447 |
+
|
448 |
+
residual = hidden_states
|
449 |
+
hidden_states = self.post_attention_layernorm[i](hidden_states)
|
450 |
+
|
451 |
+
if i == 0:
|
452 |
+
shortcut_mlp_output = self.mlp(hidden_states) # shortcut output (MoE output)
|
453 |
+
|
454 |
+
hidden_states = self.mlps[i](hidden_states)
|
455 |
+
hidden_states = residual + hidden_states
|
456 |
+
if i == 1:
|
457 |
+
hidden_states = hidden_states + shortcut_mlp_output
|
458 |
+
|
459 |
+
return hidden_states
|
460 |
+
|
461 |
+
|
462 |
+
@auto_docstring
|
463 |
+
class LongcatFlashPreTrainedModel(PreTrainedModel):
|
464 |
+
config: LongcatFlashConfig
|
465 |
+
base_model_prefix = "model"
|
466 |
+
supports_gradient_checkpointing = True
|
467 |
+
_no_split_modules = ["LongcatFlashDecoderLayer"]
|
468 |
+
_skip_keys_device_placement = ["past_key_values"]
|
469 |
+
_supports_flash_attn = True
|
470 |
+
_supports_sdpa = True
|
471 |
+
_supports_flex_attn = True
|
472 |
+
_can_compile_fullgraph = True
|
473 |
+
_supports_attention_backend = True
|
474 |
+
_can_record_outputs = {
|
475 |
+
"hidden_states": LongcatFlashDecoderLayer,
|
476 |
+
"attentions": LongcatFlashMLA,
|
477 |
+
}
|
478 |
+
|
479 |
+
|
480 |
+
@auto_docstring
|
481 |
+
class LongcatFlashModel(LongcatFlashPreTrainedModel):
|
482 |
+
_keys_to_ignore_on_load_unexpected = [r"model\.mtp.*"]
|
483 |
+
|
484 |
+
def __init__(self, config: LongcatFlashConfig):
|
485 |
+
super().__init__(config)
|
486 |
+
self.padding_idx = config.pad_token_id
|
487 |
+
self.vocab_size = config.vocab_size
|
488 |
+
|
489 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
490 |
+
self.layers = nn.ModuleList(
|
491 |
+
[LongcatFlashDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
492 |
+
)
|
493 |
+
self.norm = LongcatFlashRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
494 |
+
self.rotary_emb = LongcatFlashRotaryEmbedding(config=config)
|
495 |
+
self.gradient_checkpointing = False
|
496 |
+
|
497 |
+
# Initialize weights and apply final processing
|
498 |
+
self.post_init()
|
499 |
+
|
500 |
+
@check_model_inputs
|
501 |
+
@auto_docstring
|
502 |
+
def forward(
|
503 |
+
self,
|
504 |
+
input_ids: Optional[torch.LongTensor] = None,
|
505 |
+
attention_mask: Optional[torch.Tensor] = None,
|
506 |
+
position_ids: Optional[torch.LongTensor] = None,
|
507 |
+
past_key_values: Optional[Cache] = None,
|
508 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
509 |
+
cache_position: Optional[torch.LongTensor] = None,
|
510 |
+
use_cache: Optional[bool] = None,
|
511 |
+
**kwargs: Unpack[TransformersKwargs],
|
512 |
+
) -> BaseModelOutputWithPast:
|
513 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
514 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
515 |
+
|
516 |
+
if inputs_embeds is None:
|
517 |
+
inputs_embeds: torch.Tensor = self.embed_tokens(input_ids)
|
518 |
+
|
519 |
+
if use_cache and past_key_values is None:
|
520 |
+
past_key_values = DynamicCache()
|
521 |
+
|
522 |
+
if cache_position is None:
|
523 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
524 |
+
cache_position: torch.Tensor = torch.arange(
|
525 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
526 |
+
)
|
527 |
+
|
528 |
+
if position_ids is None:
|
529 |
+
position_ids = cache_position.unsqueeze(0)
|
530 |
+
|
531 |
+
causal_mask = create_causal_mask(
|
532 |
+
config=self.config,
|
533 |
+
input_embeds=inputs_embeds,
|
534 |
+
attention_mask=attention_mask,
|
535 |
+
cache_position=cache_position,
|
536 |
+
past_key_values=past_key_values,
|
537 |
+
position_ids=position_ids,
|
538 |
+
)
|
539 |
+
|
540 |
+
hidden_states = inputs_embeds
|
541 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
542 |
+
|
543 |
+
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
|
544 |
+
hidden_states = decoder_layer(
|
545 |
+
hidden_states,
|
546 |
+
attention_mask=causal_mask,
|
547 |
+
position_ids=position_ids,
|
548 |
+
past_key_value=past_key_values,
|
549 |
+
cache_position=cache_position,
|
550 |
+
position_embeddings=position_embeddings,
|
551 |
+
**kwargs,
|
552 |
+
)
|
553 |
+
|
554 |
+
hidden_states = self.norm(hidden_states)
|
555 |
+
return BaseModelOutputWithPast(
|
556 |
+
last_hidden_state=hidden_states,
|
557 |
+
past_key_values=past_key_values,
|
558 |
+
)
|
559 |
+
|
560 |
+
|
561 |
+
@auto_docstring
|
562 |
+
class LongcatFlashForCausalLM(LongcatFlashPreTrainedModel, GenerationMixin):
|
563 |
+
_tied_weights_keys = ["lm_head.weight"]
|
564 |
+
_tp_plan = {"lm_head": "colwise_rep"}
|
565 |
+
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
|
566 |
+
_keys_to_ignore_on_load_unexpected = [r"model\.mtp.*"]
|
567 |
+
|
568 |
+
def __init__(self, config):
|
569 |
+
super().__init__(config)
|
570 |
+
self.model = LongcatFlashModel(config)
|
571 |
+
self.vocab_size = config.vocab_size
|
572 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
573 |
+
|
574 |
+
# Initialize weights and apply final processing
|
575 |
+
self.post_init()
|
576 |
+
|
577 |
+
def set_decoder(self, decoder):
|
578 |
+
self.model = decoder
|
579 |
+
|
580 |
+
def get_decoder(self):
|
581 |
+
return self.model
|
582 |
+
|
583 |
+
@can_return_tuple
|
584 |
+
@auto_docstring
|
585 |
+
def forward(
|
586 |
+
self,
|
587 |
+
input_ids: Optional[torch.LongTensor] = None,
|
588 |
+
attention_mask: Optional[torch.Tensor] = None,
|
589 |
+
position_ids: Optional[torch.LongTensor] = None,
|
590 |
+
past_key_values: Optional[Cache] = None,
|
591 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
592 |
+
labels: Optional[torch.LongTensor] = None,
|
593 |
+
use_cache: Optional[bool] = None,
|
594 |
+
cache_position: Optional[torch.LongTensor] = None,
|
595 |
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
596 |
+
**kwargs: Unpack[TransformersKwargs],
|
597 |
+
) -> CausalLMOutputWithPast:
|
598 |
+
r"""
|
599 |
+
Example:
|
600 |
+
|
601 |
+
```python
|
602 |
+
>>> from transformers import AutoTokenizer, LongcatFlashForCausalLM
|
603 |
+
|
604 |
+
>>> model = LongcatFlashForCausalLM.from_pretrained("meta-longcat_flash/LongcatFlash-2-7b-hf")
|
605 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("meta-longcat_flash/LongcatFlash-2-7b-hf")
|
606 |
+
|
607 |
+
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
608 |
+
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
609 |
+
|
610 |
+
>>> # Generate
|
611 |
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
612 |
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
613 |
+
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
614 |
+
```"""
|
615 |
+
outputs: BaseModelOutputWithPast = self.model(
|
616 |
+
input_ids=input_ids,
|
617 |
+
attention_mask=attention_mask,
|
618 |
+
position_ids=position_ids,
|
619 |
+
past_key_values=past_key_values,
|
620 |
+
inputs_embeds=inputs_embeds,
|
621 |
+
use_cache=use_cache,
|
622 |
+
cache_position=cache_position,
|
623 |
+
**kwargs,
|
624 |
+
)
|
625 |
+
|
626 |
+
hidden_states = outputs.last_hidden_state
|
627 |
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
628 |
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
629 |
+
logits = self.lm_head(hidden_states[:, slice_indices, :])
|
630 |
+
|
631 |
+
loss = None
|
632 |
+
if labels is not None:
|
633 |
+
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
|
634 |
+
|
635 |
+
return CausalLMOutputWithPast(
|
636 |
+
loss=loss,
|
637 |
+
logits=logits,
|
638 |
+
past_key_values=outputs.past_key_values,
|
639 |
+
hidden_states=outputs.hidden_states,
|
640 |
+
attentions=outputs.attentions,
|
641 |
+
)
|
642 |
+
|
643 |
+
|
644 |
+
__all__ = ["LongcatFlashPreTrainedModel", "LongcatFlashModel", "LongcatFlashForCausalLM"]
|
special_tokens_map.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<longcat_s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "</longcat_s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<longcat_pad>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"unk_token": {
|
24 |
+
"content": "<longcat_unk>",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
}
|
30 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_bos_token": false,
|
3 |
+
"add_eos_token": true,
|
4 |
+
"add_prefix_space": false,
|
5 |
+
"bos_token": {
|
6 |
+
"__type": "AddedToken",
|
7 |
+
"content": "<longcat_s>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": true,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false
|
12 |
+
},
|
13 |
+
"clean_up_tokenization_spaces": false,
|
14 |
+
"eos_token": {
|
15 |
+
"__type": "AddedToken",
|
16 |
+
"content": "</longcat_s>",
|
17 |
+
"lstrip": false,
|
18 |
+
"normalized": true,
|
19 |
+
"rstrip": false,
|
20 |
+
"single_word": false
|
21 |
+
},
|
22 |
+
"model_max_length": 131072,
|
23 |
+
"pad_token": {
|
24 |
+
"__type": "AddedToken",
|
25 |
+
"content": "<longcat_pad>",
|
26 |
+
"lstrip": false,
|
27 |
+
"normalized": true,
|
28 |
+
"rstrip": false,
|
29 |
+
"single_word": false
|
30 |
+
},
|
31 |
+
"sp_model_kwargs": {},
|
32 |
+
"tokenizer_class": "BloomTokenizer",
|
33 |
+
"unk_token": {
|
34 |
+
"__type": "AddedToken",
|
35 |
+
"content": "<longcat_unk>",
|
36 |
+
"lstrip": false,
|
37 |
+
"normalized": true,
|
38 |
+
"rstrip": false,
|
39 |
+
"single_word": false
|
40 |
+
},
|
41 |
+
"chat_template": "{%- set tool_choice = tool_choice | default('auto') %}\n{%- set ns = namespace(rounds = 0, tool_types = [], last_query_index = -1) %}\n\n{%- if tools and tool_choice != 'none' %}\n {{- \"# Tools\n\" }}\n {{- \"You have access to the following tools: \n\n\" }}\n {%- for tool in tools %}\n {%- if tool.type in ['code_interpreter', 'function'] %}\n {%- if tool.type not in ns.tool_types %}\n {%- set ns.tool_types = ns.tool_types + [tool.type] %}\n {{- \"## Tool namespace: \" ~ tool.type ~ \"\n\n\" }}\n {%- endif %}\n {%- if tool.type == 'code_interpreter' %}\n {%- set tool = {\"type\":\"code_interpreter\",\"function\":{\"name\":\"code_interpreter_preview\",\"description\":\"The code will be executed in a stateful Jupyter notebook sandbox environment, only supports local computation, data processing, and file operations. \nCode sandbox environment (network isolated) Any external network requests or online API calls are prohibited. \nIf online functionality is needed, please use other permitted tools. \nCode will respond with the output of the execution or time out after 60.0 seconds. \",\"parameters\":{\"type\":\"object\",\"properties\":{\"language\":{\"type\":\"string\",\"description\":\"The programming language of the code to be executed. Available values: python (Default), java, go, js, ts, c, c++.\"},\"code\":{\"type\":\"string\",\"description\":\"Python code to be executed must not include the following:\n- Importing network libraries such as requests, httplib, etc.\n- Any form of HTTP requests.\n- External API calls.\n- Network port operations. Example: ```python\nimport pandas as pd\npd.DataFrame({'A':[1,2]})\n```\"},\"timeout\":{\"type\":\"number\",\"description\":\"The maximum execution time of the code, in seconds. Default is 60.0.\"}}},\"required\":[\"code\"]}} %}\n {%- endif %}\n {{- \"### Tool name: \" + tool.function.name + \"\n\n\" }}\n {{- \"Description: \" + tool.function.description + \"\n\n\" }}\n {{- \"InputSchema: \n\" + tool.function.parameters | tojson(indent=2) + \"\n\n\" }}\n {%- endif %}\n {%- endfor %}\n {{- '**Note**: For each function call, return a json object with function name and arguments within <longcat_tool_call></longcat_tool_call> XML tags as follows:\n<longcat_tool_call>\n{\"name\": <function-name>, \"arguments\": <args-dict>}\n</longcat_tool_call>\n' }}\n {{- 'When multiple functions need to be called simultaneously, each function call should be wrapped in its own <longcat_tool_call> tag and placed consecutively. For example:\n<longcat_tool_call>\n{\"name\": <function-name>, \"arguments\": <args-dict>}\n</longcat_tool_call><longcat_tool_call>\n{\"name\": <function-name>, \"arguments\": <args-dict>}\n</longcat_tool_call>\n\n' }}\n {{- \"# Messages\n\" }}\n\n {%- for idx in range(messages|length - 1) %}\n {%- set msg = messages[idx] %}\n {%- if msg.role == 'assistant' and not msg.tool_calls %}\n {%- set ns.last_query_index = idx %}\n {%- endif %}\n {%- endfor%}\n{%- endif %}\n\n{%- for msg in messages %}\n {%- if msg.role == \"system\" %}\n {{- \"SYSTEM:\" + msg.content }}\n {%- elif msg.role == \"user\" %}\n {%- if loop.first %}\n {{- \"[Round \" ~ (ns.rounds) ~ \"] USER:\" }}\n {%- else %}\n {{- \" [Round \" ~ (ns.rounds) ~ \"] USER:\"}}\n {%- endif %}\n {%- set ns.rounds = ns.rounds + 1 %}\n {%- if msg[\"files\"] %}\n {{- '<longcat_files>\n' ~ msg.files | tojson(indent=2) ~ '\n</longcat_files>' }}\n {%- endif %}\n {{- msg.content }}\n {%- elif msg.role == \"assistant\" %}\n {{- \" ASSISTANT:\" }}\n {%- if enable_thinking == true and msg.reasoning_content and ns.tool_types != [] and loop.index0 > ns.last_query_index %}\n {{- \"\n<longcat_think>\n\" ~ msg.reasoning_content ~ \"\n</longcat_think>\n\" }}\n {%- endif %}\n {%- if msg.content%}\n {{- msg.content }}\n {%- endif %}\n {%- if msg.tool_calls %}\n {%- for tool_call in msg.tool_calls -%}\n {{- \"<longcat_tool_call>\n\" -}}\n {%- if tool_call.function.arguments is string -%}\n {\"name\": \"{{ tool_call.function.name}}\", \"arguments\": {{tool_call.function.arguments}}}\n {%- else -%}\n {\"name\": \"{{ tool_call.function.name}}\", \"arguments\": {{tool_call.function.arguments | tojson}}}\n {%- endif -%}\n {{- \"\n</longcat_tool_call>\" }}\n {%- endfor %}\n {%- endif %}\n {%- elif msg.role == \"tool\" %}\n {{- \" TOOL:\" -}}\n {%- if msg.name -%}\n {\"name\": {{msg.name | tojson}}, \"content\": {{msg.content | tojson}}}\n {%- else -%}\n {\"content\": {{msg.content | tojson}}}\n {%- endif -%}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %} \n {%- if enable_thinking == true %}\n {{- \" /think_on\" }}\n {%- if thinking_budget %}\n {%- if thinking_budget < 1024 %}\n {%- set thinking_budget = 1024 %}\n {%- endif%}\n {{- \"\nthinking_budget: < \" ~ thinking_budget ~ \".\"}}\n {%- endif %}\n {{- \" ASSISTANT:<longcat_think>\n\"}}\n {%- elif enable_thinking == false %}\n {{- \" /think_off ASSISTANT:<longcat_think>\n\n</longcat_think>\n\" }}\n {%- else %}\n {{- \" ASSISTANT:\" }}\n {%- endif %}\n{%- endif %}"
|
42 |
+
}
|