--- base_model: openai/whisper-medium datasets: - google/fleurs language: - hi license: apache-2.0 metrics: - wer tags: - generated_from_trainer model-index: - name: Whisper Medium hindi -megha sharma results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Google Fleurs type: google/fleurs config: hi_in split: None args: 'config: hi, split: test' metrics: - type: wer value: 18.176493557204218 name: Wer --- # Whisper Medium hindi -megha sharma This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Google Fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.3120 - Wer: 18.1765 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.2166 | 0.8475 | 250 | 0.2327 | 26.1128 | | 0.1217 | 1.6949 | 500 | 0.1955 | 21.5053 | | 0.0578 | 2.5424 | 750 | 0.2025 | 20.7536 | | 0.0271 | 3.3898 | 1000 | 0.2230 | 20.5096 | | 0.0134 | 4.2373 | 1250 | 0.2463 | 20.3046 | | 0.0105 | 5.0847 | 1500 | 0.2463 | 19.7970 | | 0.0064 | 5.9322 | 1750 | 0.2636 | 19.2796 | | 0.0048 | 6.7797 | 2000 | 0.2678 | 19.5920 | | 0.0034 | 7.6271 | 2250 | 0.2765 | 19.2991 | | 0.0021 | 8.4746 | 2500 | 0.2710 | 18.5084 | | 0.0006 | 9.3220 | 2750 | 0.2879 | 19.2015 | | 0.0001 | 10.1695 | 3000 | 0.2895 | 18.4303 | | 0.0003 | 11.0169 | 3250 | 0.2930 | 18.3815 | | 0.0005 | 11.8644 | 3500 | 0.3032 | 18.5963 | | 0.0001 | 12.7119 | 3750 | 0.3003 | 18.4889 | | 0.0001 | 13.5593 | 4000 | 0.3054 | 18.4010 | | 0.0001 | 14.4068 | 4250 | 0.3085 | 18.2058 | | 0.0 | 15.2542 | 4500 | 0.3104 | 18.1472 | | 0.0 | 16.1017 | 4750 | 0.3116 | 18.1863 | | 0.0 | 16.9492 | 5000 | 0.3120 | 18.1765 | ### Framework versions - Transformers 4.43.3 - Pytorch 2.4.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1