--- base_model: openai/whisper-medium datasets: - google/fleurs language: - hi license: apache-2.0 metrics: - wer tags: - generated_from_trainer model-index: - name: Whisper Medium Hindi -megha sharma results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Google Fleurs type: google/fleurs config: hi_in split: None args: 'config: hi, split: test' metrics: - type: wer value: 17.746973838344395 name: Wer --- # Whisper Medium Hindi -megha sharma This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Google Fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.4008 - Wer: 17.7470 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 20000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:-----:|:---------------:|:-------:| | 0.067 | 3.3898 | 1000 | 0.2071 | 20.8024 | | 0.0116 | 6.7797 | 2000 | 0.2594 | 19.6505 | | 0.0032 | 10.1695 | 3000 | 0.2891 | 19.0062 | | 0.0029 | 13.5593 | 4000 | 0.3075 | 18.9086 | | 0.0026 | 16.9492 | 5000 | 0.3211 | 19.1722 | | 0.0033 | 20.3390 | 6000 | 0.3254 | 18.6841 | | 0.0014 | 23.7288 | 7000 | 0.3304 | 18.2546 | | 0.0008 | 27.1186 | 8000 | 0.3422 | 18.4889 | | 0.0023 | 30.5085 | 9000 | 0.3379 | 18.0886 | | 0.0009 | 33.8983 | 10000 | 0.3525 | 18.4010 | | 0.0006 | 37.2881 | 11000 | 0.3511 | 18.0301 | | 0.0001 | 40.6780 | 12000 | 0.3651 | 18.1863 | | 0.0001 | 44.0678 | 13000 | 0.3627 | 17.8446 | | 0.0 | 47.4576 | 14000 | 0.3775 | 17.6982 | | 0.0 | 50.8475 | 15000 | 0.3868 | 17.7079 | | 0.0 | 54.2373 | 16000 | 0.3944 | 17.7079 | | 0.0 | 57.6271 | 17000 | 0.4008 | 17.7470 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1